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Abstract

While invaluable for many computer vision applications,
decomposing a natural image into intrinsic reflectance and
shading layers represents a challenging, underdetermined
inverse problem. As opposed to strict reliance on conven-
tional optimization or filtering solutions with strong prior
assumptions, deep learning based approaches have also
been proposed to compute intrinsic image decompositions
when granted access to sufficient labeled training data.
The downside is that current data sources are quite lim-
ited, and broadly speaking fall into one of two categories:
either dense fully-labeled images in synthetic/narrow set-
tings, or weakly-labeled data from relatively diverse natu-
ral scenes. In contrast to many previous learning-based ap-
proaches, which are often tailored to the structure of a par-
ticular dataset (and may not work well on others), we adopt
core network structures that universally reflect loose prior
knowledge regarding the intrinsic image formation process
and can be largely shared across datasets. We then apply
flexibly supervised loss layers that are customized for each
source of ground truth labels. The resulting deep archi-
tecture achieves state-of-the-art results on all of the major
intrinsic image benchmarks, and runs considerably faster
than most at test time.

1. Introduction
The decomposing of natural images into multiple intrin-

sic layers can serve a variety of high-level vision tasks such
as 3D object compositing, surface re-texturing, and relight-
ing [3]. In this regard, the core intrinsic image model we
consider here is predicated on an ideal diffuse environment,
in which an input image I is the pixel-wise product of an
albedo or reflectance image R and a shading image S, i.e.,

I ≈ R� S. (1)

The albedo layer indicates how object surface materials re-
flect light, while shading accounts for illumination effects
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due to geometry, shadows, and interreflections. While ob-
viously useful, estimating such a decomposition is a fun-
damentally ill-posed problem as there exist infinitely many
feasible solutions to (1). Fortunately though, prior informa-
tion, often instantiated via specially tailored image smooth-
ing filters or energy terms, allows us to constrain the space
of feasible solutions [1, 2, 3, 7, 17, 20]. For example,
the albedo image will usually be approximately piecewise
constant, with a finite number of levels reflecting a dis-
crete set of materials and boundaries common to natural
scenes. In contrast, the shading image is often assumed to
be greyscale, and is more likely to contain smooth grada-
tions quantified by small directional derivatives except at
locations with cast shadows or abrupt changes in scene ge-
ometry [13].

On the other hand, given access to ground truth intrinsic
image decompositions, deep convolutional neural networks
(CNN), at least in principle, provide a data-driven candidate
for solving this ill-posed inverse problem with fewer po-
tentially heuristic or hand-crafted assumptions. However,
ground truth data that sufficiently covers the rich variety
inherent to natural scenes, and includes dense intrinsic la-
bels across entire images, is extremely difficult to acquire.
Consequently, existing databases are each limited in var-
ious different ways, and thus far, state-of-the-art deep net-
work models built using them likewise display a high degree
of dataset-dependent architectural variance, i.e., to achieve
the best results, significantly different network architectures
have been applied that compensate for each nuanced data
source.

For instance, the MIT intrinsic dataset [11] is limited to
images of single, specialized objects, which lacks diversity
and scene-level realism for training a network that gener-
alizes to broader scenarios. On the other hand, the MPI-
Sintel benchmark is rendered on an open source animation
movie [4]. Their rendered images often lack realism, and
traditional deep networks trained on these data may per-
form poorly on more natural examples [19]. Finally then,
to overcome the above downsides, the Intrinsic Images in
the Wild (IIW) dataset was created from real-world photos
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[2]. Although dense ground truth decompositions are not
available, pairwise reflectance comparisons have been la-
beled via Amazon Mechanical Turk for a sparse collection
of points in each image.

To summarize then, there presently exists a trade-off be-
tween realistic yet weakly supervised image sources (e.g.,
IIW with sparse, pairwise comparison labels) and synthetic
or highly-controlled sources blessed with dense ground
truth labels (e.g., MIT and MPI-Sintel). In general, pre-
vious learning-based solutions have invoked network de-
signs and training pipelines specifically tailored for a par-
ticular data source. But if our ultimate goal is a model that
can eventually transfer to practical environments, then it
behooves us to consider data-set-independent architectures.
Or stated conversely, if a different nuanced model structure
is required to obtain state-of-the-art results on each differ-
ent intrinsic image benchmark (all of which have signifi-
cant shortcomings as mentioned above), then how confident
can we be that any one such structure will effectively trans-
late to broader application scenarios with more diverse in-
put sources? For this reason we consider a quasi-universal
architecture in the sense that, small differences in parame-
terizations to account for dataset size/type notwithstanding,
the high-level pipeline itself is identical whether training is
performed using samples formed from dense maps (MPI,
MIT-Sintel) or pair-wise comparisons (IIW).

To accomplish this we allow flexible supervision layers
to serve as an intermediary between diverse training data
sources and an otherwise fixed network architecture. The
latter is chosen to reflect basic universal assumptions de-
scribing intrinsic image decompositions independent of any
one data particular set. For example, we assume that the
albedo component is a priori likely to be piecewise constant
or flattened, reflecting broad areas of identical reflectance
and abrupt changes to new material surfaces. Such a prior
should be broadly effective regardless of available supervi-
sion. We incorporate this knowledge via three network sub-
structures: (i) a direct intrinsic network to predict a coarse
first estimate of the albedo and/or shading image, (ii) an in-
dependent guidance network to predict the significant edges
that largely originate from the albedo layer, and (iii) a 1D
recursive domain filter that uses the output of the guidance
network to steer the final albedo estimate towards a piece-
wise constant or flattened image. The entire process is dif-
ferentiable and amenable to end-to-end training.

Our overall contributions can be summarized as follows:

• We provide the first demonstration of a single basic
deep architecture capable of achieving state-of-the-art
results when applied to each of the major intrinsic
benchmarks, despite the radically different nature of
the underlying data types. Unlike previous approaches,
we accomplish this by modifying the training objec-
tive via flexible supervision layers without the need to

significantly modify the overarching network structure
itself, which is based on loose prior assumptions natu-
rally satisfied by real images.

• On the most challenging IIW data, we provide the
first trainable end-to-end system that can both produce
state-of-the-art results on supervised pairwise com-
parison metrics computed from sparse points, while
simultaneously generating a plausible, piecewise-flat
dense map to characterize all other unsupervised im-
age locations.

• We achieve significant improvements over both unseen
indoor and outdoor real images via joint training of
multiple data sources. We demonstrate that the well-
known limitations of the existing dataset can be over-
come by incorporating other types of training samples.

• We accomplish each of the above via a system re-
quiring a minimal computational footprint at test time,
with execution speeds comparable or considerably
faster than existing alternatives.

2. Related Work
A variety of deep learning based approaches have been

applied to the IIW dataset. For example, [15] learns a lo-
cal linear classifier using deep features and contextual clues
present in two local image patches. Alternatively, in [21]
a multi-stream network architecture is learned whose input
source comes not only from the local surrounding patch of
compared points, but also from the global image. More-
over, to estimate a globally consistent albedo layer, a sec-
ond, relative reflectance classification step is incorporated
via optimization of a hinge loss. Similarly, [22] also learns a
deep network to classify the pairwise points from both local
and global contextual information. Afterwards, they yield
a piecewise constant albedo image by segmenting the input
image into constant superpixels and optimizing a quadratic
objective function.

Note that each of the above examples treat the intrinsic
decomposition as a classification problem, and ultimately
require feeding every pair of patches to the trained deep
network to predict the relative reflectance of a new image,
which is very computationally-intensive. In contrast, [16]
attempts to first predict a dense reflectance layer via a con-
volutional neural network by supervising the sparse pair-
wise points of IIW using a similar hinge loss. Given that
such a predicted image will not generally meet the piece-
wise constancy requirement of albedo layers, they execute
a second post-processing step using [3] to flatten the dense
map through a guided filter or joint bilateral filter.

Several existing deep network pipelines have also been
built using the MPI-Sintel and MIT datasets with dense
ground truth labels. First, [19] learns a two-scale convo-
lutional network to directly predict both albedo and shading
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Figure 1. The proposed framework. Our end-to-end trainable intrinsic image estimation framework, which produces a flattened albedo
image and a realistic shading image. Orange boxes indicate shared network structures, while green boxes represent the final network
outputs and flexible loss layers that vary based on available supervision, either weak pairwise comparisons, e.g., IIW (top), or full dense
ground truth intrinsic images, e.g., MPI-Sintel and MIT (bottom). Note that for the IIW data (top), only an albedo image is directly
estimated; the shading is then computed via (1).

images. However, the specific architecture, which closely
resembles that from [8] developed for predicting depth and
surface normals, involves intermediate feature maps at 1/32
scale such that significant detail information may be com-
promised. A second more recent method from [18] trains an
encoder-decoder CNN to learn albedo, shading and specular
images with millions of object-level synthetic intrinsic im-
ages via rendering ShapeNet [5] 1; however, this approach
does not apply to scene-level images as we consider herein.

3. Shared Network Structures
Our proposed framework is composed of three central

functional components that are largely shared across dif-
ferent dataset types: (i) a direct intrinsic image estimation
network (Direct Intrinsic Net), (ii) a sparse guidance map
prediction (Guidance Network), and (iii) a reflectance im-
age flattening module (Domain Filter). Figure 1 displays
their arrangement, while details are contained below.

3.1. Direct Intrinsic Network

Given an input image, an initial coarse estimate R′ of
the dense intrinsic image decomposition is produced via a
26-layer fully convolutional neural network. The front 3

1Note also that we requested this data during the preparation of our
work; however, we were informed by the authors of [18] that it was not
available for distribution.

convolution layers extract a number of feature maps and
downscale the resolution to half the input image. The inter-
mediate feature descriptors so-obtained are then fed through
the middle 20 dilated convolutional layers, which are reor-
ganized into 10 residual blocks to accelerate network con-
vergence. The output from residual blocks are finally re-
constructed to the required intrinsic images by the last 3
convolutional layers. Except for the final convolution, all
the other layers share the kernel size (3×3) and the chan-
nels for the feature maps (32), and all are followed by batch
normalization (BN) and ReLU layers.

While this basic structure is inherited for all experiments,
minor customizations must be introduced to accommodate
the diversity of training data formats, labeling, and size.
In particular, for IIW data where labeling is restricted to
sparse pairwise comparisons of relative reflectance, we only
require that the Direct Intrinsic Network produce a scalar
albedo intensity r for every image pixel. Note however
that if we adopt the common assumption that the scene
lighting is achromatic as is commonly done for IIW data
[2, 3, 16, 21, 22], then r can be expanded to the full albedo
R′ and shading S layers across all 3 color channels using
the differentiable transform

R′i =
ri

1
3

∑
c(I

c
i )
· Ii, Si =

1
3

∑
c(I

c
i )

ri
· [1, 1, 1], (2)



where i denotes the pixel location and c is the RGB color in-
dex. Hence a simple reconstruction layer can easily produce
a full intrinsic decomposition as required by later modules,
even if for present purposes here we only output a scalar
greyscale reflectance map.

In contrast, for datasets like MIT and MPI-Sintel where
dense albedo and shading labels are provided and achro-
matic lighting assumptions do not strictly hold (e.g., the
shading image can be colorful per the generative process),
it is more suitable for the Direct Intrinsic Network to sep-
arately output full albedo and shading layers. Therefore,
the basic network structure described above is split into two
branches from within the intermediate residual blocks, one
for albedo and another for shading. Furthermore, to achieve
a better performance using these dense datasets, we expand
the depth to 42 convolution layers, and channels for the fea-
ture maps to 64.

3.2. Guidance Network

The images generated by the Direct Intrinsic Network
described above already demonstrate excellent numerical
performance. But we nonetheless still observe that the di-
rect estimation of intrinsic images using parameterized con-
volutions does not always preserve the flattening effects ex-
hibited by natural reflectance images. To tackle this issue,
previous approaches have applied post-processing via either
a separate optimization step [21, 22] or various filtering op-
erations [16], all of which rely on strong priors and/or addi-
tional inputs to generate realistic piecewise constant effects
at a high computational cost. Instead, to obviate the need
for any expensive post-processing, we leverage a cheap do-
main filter guided by a learned edge map that highlights key
sparse structure indigenous to albedo images.

Given a guidance image G with salient structural infor-
mation pertaining to R (more on how G is chosen in Sec-
tion 4), we compute a scalar edge map via

Ei(G) =
∑

j∈N2(i)

|
∑
c

(Gci −Gcj)|, (3)

where E(G) represents the extracted sparse structure of the
guided image and N2(i) indicates the surrounding points
within a 2-pixel distance from point i. The output edge map
is greyscale and its intensity demonstrates how salient the
color transition is at each point.

Our Guidance Network learns a mapping from I to
E(G) via a similar network structure as the Direct Intrin-
sic Network from above. It consists of 18 convolutional
layers with 64 feature maps (except for the last one), and
we also adopt dilated convolution for the middle residual
blocks. Note that the Guidance Network is unchanged for
all datasets. Additionally, we have observed that the com-
puted edge map of the guidance image is usually a simpli-
fied version of the one computed from the original input im-

age I (i.e., since the guidance image should contain fewer
spurious details). Therefore, we feed both the original input
image and its associated input edge map E(I) computed
via (3) into the Guidance Network to predict the required
salient edge guidance map, which we denote E′.

3.3. Domain Filter

To generate a realistically flattened albedo image, we
adopt a guided, edge-preserving domain filter that requires
two inputs: the reflectance image R′ as produced by our
Direct Intrinsic Network, and a scalar guidance map E′ as
computed by our Guidance Network. The Domain Filter ad-
mits an efficient implementation via separable 1D recursive
filtering layers applied across rows and columns in an im-
age, which means performing a horizontal pass along each
image row, and a vertical pass along each image column
iteratively. For an input 1D signal X , the filtered output
signal Y can be defined on the transformed domain of guid-
ance map E′ using

Yi = (1− gi)Xi + giYi−1, (4)

where g is a function of E′ obtained via the method from
[10]. In this context, gi determines the amount of diffusion
by controlling the relative contribution of the raw input sig-
nal Xi to the filtered signal value at the previous position
Yi−1 (the 2D case is similar, where X and Y correspond
with the reflectance image before and after filtering). The
cumulative effect is that if the learned guidance map is large
at point i, which means there is a strong color transition
there, the filtered reflectance at point i− 1 will not be prop-
agated to the point i. Otherwise, point i will be flattened
or averaged with the value at point i − 1. Note that similar
recursive 1D filtering has been effectively applied to image
smoothing [10, 14] and semantic segmentation [6], which
are highly-related computer vision applications.

4. Flexibly Supervised Loss Layers
This section discusses the flexibly supervised loss layers

(see Figure 1) that can be customized to the distinct forms of
available ground truth labels. We differentiate two primary
categories of loss layers, one for handling pairwise compar-
ison data of albedo intensities, the other for handling dense
maps of full albedo and shading decompositions.

4.1. Pairwise Comparison Data

We begin with the pairwise relative reflectance judge-
ments as found in the IIW dataset. As no dense ground
truth labels are available, [2] introduced the weighted hu-
man disagreement rate (WHDR) as the error metric. For
the k-th pair of connected points denoted {k1,k2}, a human
judgement Jk ∈ {1, 2, E} is issued that indicates if point
k1 is either darker than (Jk = 1), lighter than (Jk = 2),



or equal to (Jk = E) the reflectance of point k2. Given
the pixel-wise mean of a predicted albedo image over RGB
channels R, a classification of reflectance pairs can then be
calculated as

Ĵδ(Rk1 , Rk2) =


1 if Rk2/Rk1 > 1 + δ,

2 if Rk1/Rk2 > 1 + δ,

E otherwise.
(5)

where δ quantifies a significant threshold for the relative
difference between two surface reflectances. The WHDR
measures the percent of human judgements Jk that an algo-
rithm estimate Ĵδ(Rk1 , Rk2) disagrees with, weighted by a
separate confidence score wk of each judgement. This met-
ric is naturally converted to a form of modified hinge loss
that can be conceptually evaluated at every possible pair of
points across a dense, trainable albedo image estimate. But
for those pairs of points for which no human label is avail-
able, we can implicitly assume that wk = 0 (i.e., zero con-
fidence). The albedo image output from the Domain Filter
can then be supervised as

Ldf =
∑
k∈ε

wk · µ(Jk, Rk1 , Rk2 , δ, ξ), (6)

where ε indicates the set of all the connected points within
the image. The function µ(Jk, Rk1 , Rk2 , δ, ξ) behaves like
a standard, SVM hinge loss term with respect to the ratio
Rk1/Rk2 when Jk ∈ {1, 2}, or an analogous ε-insensitive
regression loss when Jk = E (see the supplementary file for
the exact form of µ). The additional hyper-parameter ξ can
be viewed as controlling the margin between neighboring
classes as described in [16]. Similar hinge loss functions
have also been incorporated into previous intrinsic image
decomposition work [16, 21]. For present purposes here,
this loss is appealing, since the input image just needs a
single forward pass through the network, and the predicted
reflectance output can then be used to compute the error
metric summed over all the connected points, which cannot
be achieved by widely used softmax loss.

Beyond this supervision at the output of our pipeline, we
also provide intermediate supervision both to the greyscale
albedo intensity r produced by the Direct Intrinsic Network
(which per our modeling assumptions captures all degrees
of freedom in the initial albedo estimateR′ as computed via
(2)), and the salient edge map E′ produced by the Guidance
Network. Regarding the former, the relevant supervision
layer is given by

Ldi =
∑
k∈ε

wk · µ(Jk, rk1 , rk2 , δ, ξ). (7)

In contrast, supervision on the predicted guidance map is a
simple mean squared error ,

Lg = ||E′ − E(G∗)||22 (8)

where G∗ denotes a ground truth guidance image. For IIW
we have no access to the true albedo images, making a dense
optimal selection for G∗ infeasible. However, if we assume
that the significant edges from the raw image I predom-
inately originate from the implicit albedo component, then
we may treat salient edges extracted from I as a rough proxy
for salient edges extracted from the unknown optimal R∗.

To this end, we computeG∗ = f(I), such that E(G∗) =
E(f(I)) ≈ E(R∗) as the ground truth guidance image,
where f is the flattening image filter from [3], which pro-
duces piecewise, salient edge-aware effects. The inclusion
of this loss term, as well as the subsequent guided Domain
Filter, helps to stabilize the network performance when ex-
trapolating to unsupervised image locations underlying the
predicted dense map, and leads to more visually realistic,
flattened reflectance images. The overall loss then becomes
the weighted combination of energy functions given by

L = Ldi + λ1Lg + λ2Ldf , (9)

where λ1 = 0.35 and λ2 = 0.1 for all experiments.

4.2. Densely Labeled Data

When dense ground truth intrinsic imagesR∗ and S∗ are
available as in MIT and MPI-Sintel datasets, we directly
utilize the mean squared error as the supervision layer for
all outputs. For the output of the Domain Filter that flattens
the albedo component, we therefore adopt the loss

Ldf = ||R−R∗||22. (10)

In contrast, because we have access to the full ground truth
for both albedo and shading layers, and given that Equation
1 is only an approximation (meaning both of these compo-
nents can actually contribute non-trivial information2), for
the output of the Direct Intrinsic Network we supervise both
R′ and S. Additionally, to help preserve the details of in-
trinsic images, the image gradients in the x and y directions
are also supervised, producing the aggregate intermediate
loss

Ldi = λ2(||R′ −R∗||22 + ||S − S∗||22)
+ λ1(||∇xR′ −∇xR∗||22 + ||∇yR′ −∇yR∗||22

+ ||∇xS −∇xS∗||22 + ||∇yS −∇yS∗||22). (11)

Finally, the loss for the Guidance Network is exactly the
same as in (8), only now we define G∗ = R∗ for the guid-
ance filter ground truth. We then jointly train the whole
network using

L = Ldi + λ1Lg + λ2Ldf , (12)

with λ1 = 0.35 and λ2 = 0.2.
2This is especially true given that MPI-Sintel data contains some de-

fective pixels and the MIT data has a mask.
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Figure 2. Qualitative comparison on the IIW benchmark. The second through forth columns represent albedo components, and the fifth
through seventh columns are the corresponding shading layers.

Methods WHDR (mean)

Baseline (const shading) 51.37
Baseline (const reflectance) 36.54
Shen et al. 2011 [17] 36.90
Retinex (color) [11] 26.89
Retinex (gray) [11] 26.84
Garces et al. 2012 [9] 25.46
Zhao et al. 2012 [20] 23.20
L1 flattening [3] 20.94
Bell et al. 2014 [2] 20.64
Zhou et al. 2015 [21] 19.95
Nestmeyer et al. 2017 (CNN) [16] 19.49
Zoran et al. 2015* [22] 17.85
Nestmeyer et al. 2017 [16] 17.69
Bi et al. 2015 [3] 17.67

Ours w/o D-Filter 15.40
Ours w/o joint training 14.52
Ours 14.45

Table 1. Quantitative results on the IIW benchmark. All the results
are evaluated on the test split of [15], except for the one marked
with * which is evaluated on their own test split and is not directly
comparable with other methods.

5. Experimental Results

5.1. Sparse Pairwise Supervision via IIW Data

Datasets: The Intrinsic Images in the Wild (IIW) bench-
mark [2] contains 5,230 real images of mostly indoor
scenes, combined with a total of 872,161 human judge-
ments regarding the relative reflectance between pairs of
points sparsely selected throughout the images. Consistent
with many prior works [15, 21, 16], we split the IIW dataset
by placing the first of every five consecutive images sorted
by the image ID into the test set while the others are used for
training. For quantifying the quality of reconstructed albedo
images, we employ the WHDR from [2] and as described in
Section 4.

Comparison: Table 1 presents the numerical results,
where our full pipeline achieves the best performance (mean
WHDR 14.45), which is significantly better than the second
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Figure 3. WHDR against runtime plot. The WHDRs are consistent
with Table 1, while the running times of the previous methods are
collected from [16]. Our algorithm achieves the best performance
on WHDR and takes less than 100ms for evaluation.

best one [3] (mean WHDR 17.67). To further deconstruct
the effectiveness of our developed framework, we also in-
clude an ablation study in the bottom of Table 1. Here we
observe that the domain filter and learned guidance map do
significantly improve the performance. Moreover, we find
that our algorithm also benefits from joint training the en-
tire pipeline. In terms of computational complexity, Figure
3 displays runtime comparisons plotted against the WHDR
performance metric across a wide array of competing meth-
ods. Note that even while obtaining the highest accuracy
score, our system is still faster than most others.

Finally, some representative visual examples are pre-
sented in Figure 2, which illustrate dense extrapolated de-
compositions across entire images. The results from [3]
show some abrupt color transitions along the front and side
of the couch that, at least by visual inspection, presumably
should have the same albedo. Likewise, the reflectance esti-
mate from [16] contains spurious noise in many places, and
is not nearly as flattened as ours.

5.2. Dense Supervision via MPI-Sintel and MIT
Data

Datasets: We follow two recent state-of-the-art deep
learning based methods [12, 19] and evaluate our algo-
rithm on the MPI-Sintel dataset [4] that facilitates scene-
level quantitative comparisons. This dataset consists of 890



MSE LMSE DSSIM

albedo shading average albedo shading average albedo shading average

image split

Retinex [11] 0.0606 0.0727 0.0667 0.0366 0.0419 0.0393 0.2270 0.2400 0.2335
Barron et al. [1] 0.0420 0.0436 0.0428 0.0298 0.0264 0.0281 0.2100 0.2060 0.2080
Chen et al. [7] 0.0307 0.0277 0.0292 0.0185 0.0190 0.0188 0.1960 0.1650 0.1805
MSCR [19] 0.0100 0.0092 0.0096 0.0083 0.0085 0.0084 0.2014 0.1505 0.1760
Ours 0.0069 0.0059 0.0064 0.0044 0.0042 0.0043 0.1194 0.0822 0.1008

scene split
MSCR [19] 0.0190 0.0213 0.0201 0.0129 0.0141 0.0135 0.2056 0.1596 0.1826
Ours 0.0189 0.0171 0.0180 0.0122 0.0117 0.0119 0.1645 0.1450 0.1547

Table 2. Quantitative comparison on the main MPI-Sintel benchmark. We evaluate our results using both scene and image splits across
three standard error rates of intrinsic images on the main MPI-Sintel dataset.

MSE LMSE DSSIM

albedo shading average albedo shading average albedo shading average

image split
JCNF [12] 0.0070 0.0090 0.0080 0.0060 0.0070 0.0065 0.0920 0.1010 0.0970
Ours 0.0040 0.0052 0.0046 0.0030 0.0040 0.0035 0.1081 0.0815 0.0948

Table 3. Quantitative comparison on the auxilliary MPI-Sintel benchmark. Note that JCNF [12] is only trained and tested on the image
split of MPI-Sintel dataset; hence our exclusion of the scene split here.

images from 18 scenes with 50 frames each (except for
one that contains 40 images). Due to limited images in
this dataset, we randomly crop 10 different patches of size
300×300 from one image to generate 8900 patches. Like
[19], we use two-fold cross validation to obtain all 890 test
results with two trained models. We evaluate our results on
both a scene split, where half the scenes are used for train-
ing and the other half for testing, and an image split, where
all 890 images are randomly separated into two parts.

While investigating the MPI-Sintel dataset online, we
noticed that there are actually two sources for the input and
albedo images. The first one is obtainable by emailing the
authors of [4] directly, while the second one can be partially
downloaded from their official web page (but also requires
emailing to obtain full ground-truth). We refer to them as
main and auxiliary MPI-Sintel dataset separately based on
their popularity among the research community.

Finally, to test performance on real images where scene-
level ground-truth is unavailable, we also use the 220 im-
ages in the MIT intrinsic dataset [11] as in [19]. This data
contains only 20 different objects, each of which has 11
images. To compare with previous methods, we train our
model using 10 objects via the split from [1], and evaluate
the results on images from the remaining objects.

Comparison: As shown in Table 2 and 3, our model
achieves the best result for most columns on the MPI-Sintel
data. Note the other methods [12, 19] also benefit from
training on additional training data. We show a group of
qualitative results trained on the more difficult scene split
in Figure 5. It can be seen that our framework produces
sharper and high-quality results.

MSE LMSE

albedo shading average total

Barron et al. [1] 0.0064 0.0098 0.0081 0.0125

Zhou et al. [21] 0.0252 0.0229 0.0240 0.0319
Shi et al.[18] 0.0216 0.0135 0.0175 0.0271
MSCR [19] 0.0207 0.0124 0.0165 0.0239
Ours 0.0134 0.0089 0.0111 0.0203

Table 4. Results on the MIT data. Performance of various methods
on Barron et al.’s test set [1]. LMSE is computed using an error
metric specifically designed for this data [11]. Note also that Bar-
ron et al.’s approach [1] relies on specialized priors and masked
objects particular to this dataset.

Next, Table 4 presents the relative performance on the
MIT intrinsic data. We observe that our approach is also the
best compared with the other deep networks [18, 19, 21]
even though [18, 19] utilize additional training data. Note
that [1] uses a number of specialized priors appropriate for
this simplified object-level data, while end-to-end CNN ap-
proaches like ours and [19] have less advantage here due
to limited training data (110 images). Moreover, [1] is not
competitive on other more complex, scene-level data types
as shown in Table 2. In Figure 4, our predicted images are
also sharper and more accurate than the other deep methods.

5.3. Joint Supervision via Multiple Data Sources

Simultaneously training on multiple datasets is a natu-
ral consideration given the generic, modular nature of our
pipeline. To briefly examine this hypothesis, we jointly
trained our model on both IIW and MPI datasets, with
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Figure 4. Qualitative comparison on the MIT intrinsic image benchmark. Compared with Shi et al. [18] and MSCR [19] on Barron et al.’s
test split, our algorithm achieves better results.
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Figure 5. Qualitative comparison on the main MPI-Sintel bench-
mark. The visual results are evaluated on the model trained on the
more difficult scene split.

shared parameters for the Direct Intrinsic and Guidance net-
works (note that although there are several compelling ways
to merge objectives, we omitted supervision on the shading
component from MPI data for simplicity here). Moreover,
to balance gradients from the two quite different loss layers,
modified hinge loss for IIW and MSE for MPI, we scale the
former as two times the latter.

Experimentally, we obtained a mean WHDR of 15.80
on IIW, better than all previous methods but not quite as
good as our previous result when trained on IIW only. This
is not surprising since the dense, synthesized MPI data is
unlikely to closely reflect real-world images and IIW pair-
wise comparisons. But crucially, MPI data can still pro-
vide useful regularization/smoothing of real-world image
structures, even though this benefit may occur away from
sparsely-labeled points interior to different surface mate-
rials and hence, contributes no quantitatively measurable
value per the WHDR criterion.

Figure 6 supports this conclusion, where our jointly
trained model is applied to three real-world images, one
from IIW, and two from an independent source. Here we
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Figure 6. Reflectance estimates generated by our deep network
when trained with only IIW data, or jointly trained with IIW and
MPI data. The joint training yields smoother and much more real-
istic results on completely new, real-world outdoor scene images
that are not a part of either dataset. Zoom to see details.

observe that complementary supervision does in fact en-
hance the qualitative performance in new testing environ-
ments and our joint model smooths various artifacts.

6. Conclusion
In this paper, we solve the intrinsic image decomposi-

tion problem using a unified deep architecture that produces
state-of-the-art results, with a minimal computational foot-
print, whether trained on weakly labeled pairwise compari-
son from IIW data or dense ground truth images from MIT
or MPI-Sintel datasets. Our network is end-to-end trainable,
requires no expensive post-processing, and is able to gener-
ate realistically-flattened dense intrinsic images even on the
more challenging IIW dataset. We conjecture that the mod-
ular structure we propose will also seamlessly adapt to new
sources of labeled data.
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