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Fig. 1. Two applications of traditional edge-preserving image smoothing. Left 4 panels: Elimination of low-amplitude details while maintaining high-contrast
edges using our method and representative traditional methods L0 [Xu et al. 2011] and SGF [Zhang et al. 2015]. L0 regularization has a strong flattening effect.
However, the side effect is that some spurious edges arise in local regions with smooth gradations, such as those on the cloud. SGF is dedicated to elimination
of fine-scale high-contrast details while preserving large-scale salient structures. However, semantically-meaningful information such as the architecture and
flagpole can be over-smoothed. In contrast, our result exhibits a more appropriate, targeted balance between color flattening and salient edge preservation.
Right 3 panels: Content-aware image manipulation. Using minimal modification of the guidance image in our proposed pipeline, we are able to implement
background (BG) smoothing or foreground (FG) enhancement/exaggeration via a single deep network. More smoothing effects and applications can be found
in Section 7.

Image smoothing represents a fundamental component of many disparate
computer vision and graphics applications. In this paper, we present a unified
unsupervised (label-free) learning framework that facilitates generating flex-
ible and high-quality smoothing effects by directly learning from data using
deep convolutional neural networks (CNNs). The heart of the design is the
training signal as a novel energy function that includes an edge-preserving
regularizer which helps maintain important yet potentially vulnerable image
structures, and a spatially-adaptive Lp flattening criterion which imposes
different forms of regularization onto different image regions for better
smoothing quality. We implement a diverse set of image smoothing solu-
tions employing the unified framework targeting various applications such
as, image abstraction, pencil sketching, detail enhancement, texture removal
and content-aware image manipulation, and obtain results comparable with
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or better than previous methods. Moreover, our method is extremely fast
with a modern GPU (e.g, 200 fps for 1280×720 images). Our codes and model
are released in https://github.com/fqnchina/ImageSmoothing.
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1 INTRODUCTION
The goal of image smoothing is to eliminate unimportant fine-scale
details while maintaining primary image structures. This technique
has a wide range of applications in computer vision and graphics,
such as tone mapping, detail enhancement, and image abstraction.
Image smoothing has been extensively studied in the past. The

early literature was dominated by filtering-based approaches [Chen
et al. 2007; Fattal 2009; Gastal and Oliveira 2011; Paris and Durand
2006; Perona and Malik 1990; Tomasi 1998; Weiss 2006] due to their
simplicity and efficiency. In recent years, smoothing algorithms
based on global optimization have gained much popularity due to
their superior smoothing results [Bi et al. 2015; Farbman et al. 2008;
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Liu et al. 2017; Min et al. 2014; Xu et al. 2011, 2012]. Despite the
great improvements, however, their smoothing results are still not
perfect, and no existing algorithm can serve as an image smoothing
panacea for various applications. Moreover, these approaches are
often very time-consuming. With the increasing power of modern
GPUs and the enormous growth of deep convolutional neural net-
works (CNNs), there is an emerging interest in employing CNNs
as surrogate smoothers in lieu of the costly optimization-based ap-
proaches [Chen et al. 2017a; Fan et al. 2017; Liu et al. 2016; Xu et al.
2015]. These methods train CNNs in a fully supervised manner
where the target outputs are generated by existing smoothing meth-
ods. While substantial speed-up can be achieved, they still produce
(approximations of) extant smoothing effects.

In this work, we seek to generate flexible and superior smoothing
effects by directly learning from data. We leverage a CNN to do
so, such that our method not only features the learned smoothing
effects that aremore appealing, but also enjoys a fast speed. However,
the desired smoothing results (ground-truth labels) for supervising
the training are difficult to obtain. Dense manually labeling for
a large volume of training images is costly and cumbersome. To
circumvent this issue, we design the training signal as an energy
function, similar to the optimization-based methods, and train our
method in an unsupervised, label-free setting.
We carefully designed our energy function to achieve quality

smoothing effects in a unified unsupervised-learning framework.
First, to explicitly fortify important image structures that may be
weakened by the flattening operator, we include a criterion that
minimizes the masked quadratic difference between two guidance
maps computed from the input image and the smoothed estimate
respectively. The guidance maps are formulated as edge responses,
and the masks are computed using simple edge detection heuristics
and can be manually modified further if desired. Second, we identi-
fied that many previous methods apply a fixed Lp -norm flattening
criterion across the entire image, which may be detrimental to the
smoothing quality. We instead introduce a spatially-adaptive Lp
flattening criterion whereby the specific value of p is varied across
images in accordance with the guidance maps. Given that p = 2
tends to smooth out edges while p ∈ (0, 1] largely preserves them,
the guidance maps allow different image regions to receive different
regularizations most appropriate for handling local structural condi-
tions. Importantly, we can apply application-specific guidance maps
which allow for the seamless implementation of multiple different
flattening effects.
We test our method on edge-preserving smoothing and various

applications including image abstraction, pencil sketching, detail
magnification, texture removal and content-ware image manipula-
tion to show its effectiveness and versatility. Broadly speaking, the
contribution of this paper can be distilled as follows:

• We introduce an unsupervised learning framework for image
smoothing. Unlike previous methods, we do not need ground-
truth labels for training and we can jointly learn from any
sufficiently diverse corpus of images to achieve the desired
performance.

• We are able to implement multiple different image smooth-
ing solutions in a single framework, and obtain results com-
parable with or better than previous methods. A novel im-
age smoothing objective function is proposed to achieve this
which is built upon a spatially-adaptive Lp flattening criterion
and an edge-preserving regularizer.

• Our new method is based on a convolutional neural network
and its computational footprint is far below most previous
methods. For example, processing a 1280×720 image takes
only 5ms on a modern GPU.

2 RELATED WORK
As a fundamental tool for many computer vision and graphics ap-
plications, image smoothing has been extensively studied in the
past decades. The filtering based approaches, such as anisotropic
diffusion [Perona and Malik 1990], bilateral filter [Tomasi 1998] and
many others [Chen et al. 2007; Fattal 2009; Gastal and Oliveira 2011;
Kass and Solomon 2010; Paris and Durand 2006; Weiss 2006] have
been the dominating image smoothing solutions for a long time.
The core idea for such methods lies in filtering each pixel with its
local spatial neighbourhood, and these methods are usually very
efficient.

Recently, algorithms using mathematical optimization for image
smoothing tasks gain more popularity due to their robustness, flexi-
bility and more importantly the superiority of the smoothing results.
For example, [Farbman et al. 2008] proposed an edge-preserving
operator in a weighted least square (WLS) optimization framework,
which prevents the local image regions from being over-sharpened
with an L2 norm. Similar schemes have been achieved more effi-
ciently by [Liu et al. 2017; Min et al. 2014]. These works are de-
voted to extracting and manipulating the image details using image
smoothing for various applications such as detail enhancement,
HDR tone mapping, etc.
On the other hand, [Xu et al. 2011] proposed a sparse gradi-

ent counting scheme in an optimization framework by minimizing
the L0 norm. The method of [Bi et al. 2015] aimed at producing
almost ideally flattening images where sharp edges are also well
preserved with L1 norm. These methods are particularly well-suited
for preserving or enhancing the sharp edges, and remove the low-
amplitude details. They can be useful for some stylization effects or
intrinsic image decompositions.
In the aforementioned applications, the image smoothing algo-

rithms typically exploit only gradient magnitude as the main cue to
discriminate primary image structures from details. [Xu et al. 2012]
presented the specifically designed relative total variation measures
to extract meaningful structure, and [Ham et al. 2015] fuses ap-
propriate structures of static and dynamic guidance images into a
non-convex regularizer. Their goal is to remove fine-scale repetitive
textures where local gradient can still be significant, which can not
be easily achieved by the aforementioned smoothing approaches.

This regularization idea can also be interpreted as an image prior
formulated in a deep network [Ulyanov et al. 2018] or image denois-
ing engine [Romano et al. 2017]. Discussions about the Lp -norm
regularization can also be found in [Bach et al. 2012; Chung and Vese
2009; Prasath et al. 2015]. Interestingly, [Mrázek et al. 2006] observe
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Fig. 2. Visual comparison between our method and previous image smoothing methods, abbreviated as SGF [Zhang et al. 2015], SDF [Ham et al. 2015], L1 [Bi
et al. 2015], BTLF [Cho et al. 2014], FGS [Min et al. 2014], RGF [Zhang et al. 2014], RTV [Xu et al. 2012], L0 [Xu et al. 2011], WLS [Farbman et al. 2008] and
BLF [Tomasi 1998]. Our smooth image is generated by depressing the low-amplitude details and preserve the high-contrast structures. It can be seen that in
addition to achieving pleasing flattening effects, the slender ropes of the parachute are also maintained much better in our result than the others. Zoom in to
see the details. Photo courtesy of Skydive Australia.

that even the image filters can all be derived from minimization of
a single energy functional with data and smoothness term.

Most of the optimization based approaches are time-consuming,
as they typically require solving large-scale linear systems (or oth-
ers). Therefore, recently some methods such as [Chen et al. 2017a;
Fan et al. 2017; Gharbi et al. 2017; Liu et al. 2016; Xu et al. 2015] were
proposed to speed up existing smoothing operators. These meth-
ods train a deep neural network using the ground-truth smoothed
images generated by existing smoothing algorithms. In contrast,
our neural network is trained by optimizing an objective function
through deep neural network in an unsupervised fashion. Note
these previous deep models and ours are fundamentally different
in many fields: target goal, training data, essential algorithm logic,
etc. Since they aimed at approximating traditional image smoothing
algorithms, while ours creates some novel and unique smoothing
effects, it makes our results not directly comparable to theirs by the
quality of smooth images.

Deep learning has been applied tomany imagemanipulation tasks
[Chen et al. 2017,b, 2018; Fan et al. 2018; He et al. 2018]. But most
previous work treat deep learning as a regression or classification
tool. In this paper, we apply deep neural network as an optimization
solution in a label-free setup.

3 APPROACH
In this section, we introduce our proposed formulation, including
an edge-preserving criterion in Section 3.1 and a spatially adaptive
Lp flattening criterion in Section 3.2 which account for structure
preservation and detail elimination respectively. Later on we de-
scribe how deep learning is leveraged for optimizing the proposed
objective in Section 3.3.

3.1 Objective Function Definition
Image smoothing aims at diminishing unimportant image details
while maintaining primary image structures. To achieve this us-
ing energy minimization, our overall energy function for image
smoothing is formulated as

E = Ed + λf · Ef + λe · Ee , (1)

where Ed is the data term, Ef is the regularization term and Ee is
the edge-preserving term. λf and λe are constant balancing weights.

The data term minimizes the difference between the input image
and the smoothed image to ensure structure similarity. Denoting
the input image by I and the output image by T , both in RGB color
space, a simple data term can be defined as

Ed =
1
N

N∑
i=1

| |Ti − Ii | |
2
2 , (2)
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where i denotes pixel index and N is the total pixel number.
Some important edges may be missed or weakened during the

smoothing process since the goal of color flattening naturally con-
flicts with edge preserving to some extent. To address this issue,
we propose an explicit edge-preserving criterion which preserves
important edge pixels.
Before presenting this criterion, we first introduce the concept

of guidance image, which is formulated as the edge response of an
image in appearance. A simple form of edge response is the local
gradient magnitude:

Ei (I ) =
∑

j ∈N(i)

|
∑
c
(Ii,c − Ij,c )| (3)

where N(i) denotes the neighborhoods of point i and c denotes the
color channel of the input image I . A similar guidance edge map of
the output smooth image T can also be calculated as E(T ).

Our edge-preserving criterion is defined by minimizing the qua-
dratic difference of their edge responses between the guidance edge
images E(I ) and E(T ). Let B be an binary map where Bi = 1 indicates
an important edge point and 0 otherwise, our edge-preserving term
is defined as

Ee =
1
Ne

N∑
i=1

Bi · | |Ei (T ) − Ei (I )| |
2
2 (4)

where Ne =
∑N
i=1 Bi is the total number of important edge points.

The definition of “important edges" is more subjective and varies
across different applications. The ideal way to obtain binary maps B
would be manual labeling with user preference. However, pixel-level
manual labeling is rather labor-intensive. In this paper, we leverage
a heuristic yet effective method to detect edges. Since this process
is not our main contribution, we defer the detailed description of
this edge detector to the supplemental material. A few examples of
the detected major image structure are shown in Section 7.1. Also
note that any previous advanced and sophisticated edge detection
algorithm can all be certainly incorporated based on user preference.
Given sufficient training images with classified edge points, the

deep network will implicitly learn the edge importance through
minimizing the edge-preserving term and reflect such information
in the smooth images. Figure 3 demonstrates an extremely difficult
case of a parachute. As can be seen, without the edge-preserving
criterion, some thin yet semantically important structures like the
white rope are smoothed out in the output images. In contrast, the
result optimized with our full criterions maintains these structures
very well.

3.2 Dynamic Spatially-Variant Lp Flattening Criterion
We now present our new smoothness/flattening term with spatially-
variant Lp norms on the image in order to gain better quality and
more flexibility.
To remove unwanted image details, the smoothing or flattening

term advocates smoothness for the solution by penalizing the color
differences between adjacent pixels:

Ef =
1
N

N∑
i=1

∑
j ∈Nh (i)

wi, j · |Ti −Tj |
pi , (5)

Input w/o L0.8 norm Ours

Input w/o L2 norm Ours

Input w/o EP criterion Ours

Fig. 3. The effectiveness of our proposed criterions. Note each individual
part is essential to generate our visually-pleasing smooth results. Zoom
in to see the details. Photo courtesy of Flickr user Michael Miller, Andre
Wislez and Sheba_Also.

where Nh (i) denotes the adjacent pixels of i in its h × h window,
wi, j denotes the weight for the pixel pairs and | · |p is an Lp norm1.

The weight wi, j can be calculated from either color affinity or
spatial affinity (or their combination), which are defined respectively
as

wr
i, j = exp(−

∑
c (Ii,c − Ij,c )

2

2σ 2
r

), (6)

ws
i, j = exp(−

(xi − x j )
2 + (yi − yj )

2

2σ 2
s

), (7)

where σr and σs are the standard deviations for the Gaussian kernels
computed in either color space or spatial space, c denotes image
channel (in this paper we use the YUV color space to compute
weightswr

i, j in Equation 6), and x ,y denote pixel coordinates.

1With slight abuse of terminology, we use Lp norm to refer to the Lp norm raised to

the p-th power, i.e., it will indicate ( | · |p+· · ·+| · |p ) as opposed to ( | · |p+· · ·+| · |p )
1
p .
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Fig. 4. The network structure used throughout this paper. Our network contains 26 convolution layers where the middle 20 layers are organized into residual
blocks of dilated convolutions with exponentially increasing dilation factor (except for the last residual block) to enlarge the receptive field. The skip connection
from the input to the output is employed such that the network learns to predict a residual image.

Determining the image regions for different Lp regularizers is not
trivial. To help locate these regions in our algorithm, we leverage
the guidance images to define the value of pi and its corresponding
weight for each image pixel as

pi , wi, j =

{
plarдe , ws

i, j if Ei (I ) < c1 and Ei (T ) − Ei (I ) > c2,

psmall , wr
i, j otherwise.

(8)
where plarдe and psmall are two representative values for p, and
c1 and c2 denote two positive thresholds. We set plarдe = 2 and
psmall = 0.8 throughout this paper. It can be seen that the p value
distribution is not determined a priori with the input image, but is
conditioned on the output image. We explain such a strategy in the
following two points.

Suppressing artifacts caused by single regularizer. The intuition
behind Equation 8 is that when we minimize the energy function,
L0.8 norm is applied until some over-sharpened spurious structures
appear in the output image due to the piecewise constant effect
caused by L0.8 regularizer, at which time L2 norm will be applied to
suppress the artifact. These spurious structures are identified as the
ones whose edge response of pixel i on the original image I is low (as
characterized by Ei (I ) < c1) but is significantly heightened on the
output imageT (per Ei (T )−Ei (i) > c2). In Figure 3, we demonstrate
a few smooth results optimized with our objective function. As can
be seen, without L2 norm, it achieves strong smoothing effects but
also yields staircasing artifacts on the lady’s cheek and shoulder.
On the other hand, without L0.8 norm, the optimized image is very
blurry and many important structures are not well preserved due
to the L2 regularizer. On the contrary, the results optimized with
our proposed full criterions are much more visually pleasing.

Enabling different applications via specialized guidance images.
Our guidance image and spatially-variant Lp flattening norm also
enable us to achieve flexible smoothing effects for different applica-
tions. For example, if the goal is to remove a certain type of image
structures like small-scale textures, we can simply eliminate all the
edge points belonging to these textures in the guidance image E(I )
by setting their values to zero. This way, the edge responses E(T ) on
these regions of the output image will always be larger, and L2 norm
will be applied to remove these textures. Later we show two such

applications – texture removal (Section 7.3) and content-aware im-
age manipulation (Section 7.4). All other results shown in this paper
are obtained by raw guidance images computed via Equation 3.

Note that we adopt spatial affinity to calculate the weightsws for
regions with an L2 norm, as it is more effective for edge suppression.
Color affinity is utilized for L0.8 norm regions for better flattening
effect. Since L2 and L0.8 norm regularize the images differently, we
amplifies the weight of L2 norm with a scale scalar α for balance.
We empirically determine these two p values, which represent the
regularization for strong flattening and blurring effects in a general
sense. They are replaceable with other alternatives.
It can be seen that our spatially variant Lp norm is not fixed,

but dynamically changing in the iterative optimization (training)
procedure based on the output image. Although we do not provide
a theoretical proof of convergence, we have found empirically that
such a procedure converges and the p value distribution stabilizes
in the end. Note we observe that [Zhu et al. 2014] also employs data-
guided sparsity in their work, but differently their regularization is
static while ours is dynamically changed from the output image.

3.3 Deep Learning based Optimization
As thewhole objective function is derivative to the optimized smooth
image, we implement it as the loss layer in a deep learning frame-
work. The loss function is optimized with gradient descent method
through a deep neural network. The whole training process is in
an unsupervised learning fashion with a large number of unlabeled
natural images. The deep network implicitly learns the optimization
procedure and once the network is trained, it only requires one for-
ward pass through the deep neural network to predict the smooth
image without further optimization steps.

Now we introduce architecture of our deep neural network which
is used for minimizing the defined energy function. Inspired by the
previous work [Yu and Koltun 2016] which enlarges the receptive
field with dilated convolutions for semantic segmentation, and [Kim
et al. 2016] which uses very deep convolutional neural network
equipped with residual learning for super-resolution, we design a
fully convolutional network (FCN) equipped with dilated convolu-
tion and skip connections for our task.

Basic structure description. Figure 4 is a schematic description
of our FCN. The network contains 26 convolution layers, all of
which use 3×3 convolution kernels and outputs 64 feature maps
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(except for the last one which produces a 3-channel image). All the
convolution operations are followed by batch normalization [Ioffe
and Szegedy 2015] and ReLU activation except for the last layer.
The third conv layer downsamples the feature maps by half via
using a stride of 2, and the third from last layer is a deconvolution
(aka fractionally-strided convolution) layer recovering the original
image size. The middle 20 conv layers are organized as 10 residual
blocks [He et al. 2016]. A full description of the detailed network
structure is presented in the supplemental material.

Large receptive field in dilated convolutions. As image smoothing
requires contextual information across wide regions, we increase
the receptive field of our FCN by using dilated convolution with
exponentially increasing dilation factors except for the last residual
block, similar to [Yu and Koltun 2016]. Specifically, any two consecu-
tive residual blocks share one dilation factor, which is doubled in the
next two residual blocks. This is an effective and efficient strategy
to increase receptive field without sacrificing image resolution: with
exponentially increasing dilation factors, all the points in an n × n
grid can be reached from any location in logarithmic steps loд(n).
Similar strategies have been used in parallel GPU implementation
of some traditional algorithms, such as Voronoi diagram [Rong and
Tan 2006] and PatchMatch [Fan et al. 2015].

Residual image learning. In the image smoothing task, the input
and output images are highly correlated. In order to ease the learn-
ing, instead of directly predicting a smoothed image we predict a
residual image and generate the final result via point-wise summa-
tion of the residual image and the raw input image. Such a residual
image learning design avoids the color attenuation issue observed
in previous works (e.g., [Kim et al. 2016]).

4 IMPLEMENTATION DETAILS
Our FCN network and energy function are implemented in the Torch
framework and optimized with mini-batch gradient descent. The
batch size is set as 1. The network weights are randomly initialized
using the method of [He et al. 2015]. The Adam [Kingma and Ba
2015] algorithm is used for training with the learning rate set as 0.01.
We train the network for 30 epoches, which takes about 8 hours on
an NVIDIA Geforce 1080 GPU.

Training and testing data. Since our network does not require
ground-truth smooth image for training, any image can be used
to train it. For better generalization to natural images, we use the
PASCALVOC dataset [Everingham et al. 2010] which contains about
17,000 images to train the network. These images were collected in
the Flicker photo-sharing website and exhibit a wide range of scenes
under a large variety of viewing conditions. We crop the images
to the size of 224×224 to accelerate the training process without
jeopardizing the smoothing quality. Once the network is trained, we
run it on images outside of PASCAL VOC and evaluate the results.

Parameter specifics: The parameters in our proposed objective
function are specified by default as follows: 0.1 (σr ), 7 (σs ), 1 (λf ), 0.1
(λe ), 5 (α ), 20 (c1), 10 (c1), 21 (h). To achieve the optimal performance
on each individual application, a small subset of parameters may be
tweaked, which is discussed in Section 7. However, note that these

Input Adam IRLS Ours

Fig. 5. Comparison between our learned deep neural network and tradi-
tional numerical solvers. Compared with the gradient descent optimizer
Adam [Kingma and Ba 2015] and Iterative Reweighted Least Square (IRLS)
[Holland and Welsch 1977], our results are visually more pleasing which do
not have the spurious staircasing structures. Photo courtesy of Tumblr user
gaaplite and LucidiPevere Studio.

parameters are only tuned based on the application type, not on any
particular images. All the images in the same application shown
in both the paper and supplemental material are generated by the
same set of parameter values.

5 METHOD ANALYSIS AND DISCUSSION
In this section, we first compare the smooth images optimized with
our deep learning solver and traditional numerical solvers, followed
by the analysis of convergence of different optimizers and the po-
tential reason why the deep learning solver achieves more visually
pleasing results than the others for our problem.

5.1 Visual results of different optimizers
To verify the efficacy of our deep learning solver, as opposed to
directly minimizing Equation 1 using a traditional optimization algo-
rithm, we compare it against two popular representative approaches,
Adam and IRLS. Adam [Kingma and Ba 2015] is a stochastic gradient
descent-based optimization method that can be generically applied
to nonconvex differentiable functions. Since our proposed objec-
tive is differentiable2, Adam is a very straightforward approach for
minimizing it, at least locally. Likewise, iterative reweighted least
square (IRLS) [Holland and Welsch 1977] represents a classical tool
for minimizing energy functions with non-quadratic forms. Several
image smoothing papers [Min et al. 2014; Xu et al. 2012] also employ
IRLS allied with objectives regularized by Lp norms (0 < p ≤ 1).
To utilize IRLS for optimization, a tight quadratic upper bound

of the energy has to be defined, which is trivial to accomplish for

2Although Lp norms are not differentiable on a set of measure zero, in such cases
subgradients can easily serve as a natural surrogate

ACM Trans. Graph., Vol. 37, No. 6, Article 259. Publication date: November 2018.
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L2 L0.8 half L2, half L0.8

Fig. 6. The loss values from four optimization solvers (IRLS, Adam, our deep learning solver and the deep learning solver overfitted on a single image) for
objective functions that contain either L2 norm, L0.8 norm or mixed of these two in the flattening criterion. hNote the loss is computed in the evaluation
stage; our deep learning solver is non-iterative thus the loss is constant (as represented by a horizontal line).
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Fig. 7. Demonstration of the results optimized with L2 norm, L0.8 norm,
half L2 half L0.8 and our adaptively-changed Lp norms. Zoom in to see
the detailed difference. Photo courtesy of Flickr user Ryan L Collins.

Lp terms as has been done in the past. However, the proposed non-
quadratic edge-preserving criterion cannot be bounded in this way,
making IRLS problematic. Therefore for the results reported in this

section, the energy function is formed from only the data term
and the spatially adaptive Lp flattening term for fair comparison
across all three methods. Smooth images optimized by different
solvers are shown in Figure 5. Note that Adam, as a gradient-based
method requires 100 iterations to converge, while IRLS only requires
about 10 iterations given that it applies second-order information
in optimizing the quadratic upper bound.
In general, both the Adam and IRLS results are less satisfactory

than our deep neural network solver. For example, with Adam some
spurious stair-casing edges are still generated as undesirable visual
artifacts. Likewise, for IRLS we observe over-sharpened side effects,
although in places not quite as severe as with Adam. Also, the
magnified local regions shown in the bottom of each figure display
areas where the color intensity varies gradually, and both Adam
and IRLS fail to smooth these areas well. Also, the magnified local
region in each figure shows that both Adam and IRLS cannot well
smooth the local regions where color varies gradually.

5.2 Performance analysis of different optimizers on fixed
Lp distribution

Now we analyze the performance of these three optimizers by com-
paring their convergence curves. Note since our proposed objective
function is adaptively changing based on the output images (per
Equation 5 and 8), it is not intuitive for comparing the convergence
trend of these different optimizers. Thus we test three represen-
tative loss functions with fixed Lp distribution map in Ef , whose
optimization difficulty is gradually increasing. They are the variants
of our objective function, where we replace the adaptively changed
regularizer with only L2 norm, only L0.8 norm, or fixed combination
of these two. Following the previous ablation study, we disable the
edge preserving term for IRLS. The loss values are averaged over 40
test images, and are shown in Figure 6. The corresponding visual
results are shown in Figure 7. Note these loss curves do not illustrate
the training process of our method. Instead, they are constant values
computed on the testing images.
With the fixed L2 norm in Ef , the whole objective function be-

comes convex and quadratic. Thus IRLS is able to achieve the optimal
results with one step. Adam is slightly better than our learned deep
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network. However, the smoothing results of both methods are rela-
tively far from optimal. Accordingly to Figure 7, IRLS demonstrates
the most blurry images regularized by L2 norm. When the objective
function contains L0.8 norm in Ef , it becomes nonconvex. From the
middle loss figure, we can see IRLS and Adam achieves similar en-
ergy value in the end, and the deep learning solver does not obtain a
loss value as low as theirs. Figure 7 shows that the smoothing results
of all the methods appear to be more piece-wise constant. Finally,
we demonstrate a case where the flattening criterion Ef contains L2
norm in left half of the image and L0.8 norm in right half. Different
from our dynamically-changed Lp norm, the Lp distribution in this
case is fixed for all different images and iterations. Figure 6 shows
that IRLS achieves the lowest energy value3, followed by Adam and
deep learning solver.
To understand why the traditional optimizers achieve lower en-

ergy values on the above three objective functions, we first illustrate
the workflow of both traditional numerical solvers and our deep
learning solver in Figure 8. As can be seen, given a particular image,
traditional numerical solvers work by iteratively optimizing this sin-
gle image. In contrast, the deep learning solver directly predicts their
results from a one-forward-pass mapping, which is learned based on a
large corpus of training data without any prior information on this
specific image. Thus traditional optimizers are more advantageous
in achieving lower energy with fixed Lp distribution, as verified by
the above three loss curves.

To further analyze the above hypothesis, we overfit our network
by training on only one single image, and compare both the final
loss and the visual results. This way, the deep learning solver works
similarly to traditional solvers. As can be seen, our deep learning
solver with overfitting is able to achieve much lower energy, espe-
cially in the case of L2 norm where our overfitting results are almost
identical to Adam. Likewise, Figure 7 shows that the visual result
obtained with the overfitting solver are visually much closer to IRLS
and Adam. For example, there is a clear separation line between the
two regularized regions for the half L2 half L0.8 case, which is not
present in the results of the original deep learning solver.
Note the loss functions defined in this subsection are used to

analyze the performance of different solvers. They are not the actual
loss function used for our image smoothing task.

5.3 Performance analysis of different optimizers on our
dynamic Lp distribution

In our proposed edge flattening criterion, the Lp distribution is adap-
tively changing based on the output images. The whole objective
function is highly complex and loss curve is not guaranteed to con-
verge. Therefore, comparing the loss curves of the different solvers
is less informative. The last row of Figure 7 shows an additional set
of results obtained under our adaptively changing Lp norm. It can
be observed the staircasing artifacts exist in the results of all IRLS,
Adam, and the overfitting-based deep learning solver. In contrast,
our deep learning solver generates very smooth results with no such
artifacts.

3To make the results more presentable, we slightly modified the objective function for
IRLS and only show its final loss in this case.
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Fig. 8. Workflow of our deep learning solver compared to traditional numer-
ical solvers when applied to the proposed objective function. Our method
employs a neural network to optimize an objective function with no ground
truth labels of smooth images. In the training stage, a few extra inputs are
required to minimize the objective function; but once the network is train,
the input image is only required to forward through the deep network once
to predict smooth images in the evaluation stage. Regarding the traditional
numerical solvers, given each new image, all the different inputs are required
to iteratively optimize the objective function.

Given each specific Lp distribution map in each iteration, the
traditional numerical solvers still tend to “overfit” that unique dis-
tribution map for its optimal results, which accordingly results in
some spurious edges that separate these different regularizations
just like the case of half L2 half L0.8 norm. In contrast, the disad-
vantage of the deep learning solver exposed in Section 5.2 becomes
an advantage in the presence of a dynamically changed Lp norm
distribution. Benefited from the large corpus of training data, the deep
learning solver incorporates the learned implicit combination of L2
and L0.8 norm into the deep network and reflects such combination,
instead of a fixed regularizer, into each pixel of the smoothed images.
It is able to generates more visually pleasing results, as shown in
both Figure 5 and 7.
Therefore, we argue that what matters to solve the proposed

objective function and obtain better smoothing result is the joint
optimization over large corpus of images, instead of any particular
image. In this specific problem, the deep learning solver plays a
critical role. Note that although many empirical experiments have
been conducted above, rigorous theoretical analysis is still lacking.
Understanding and explaining deep neural networks are still open
problems for the follow-up research.

6 EXPERIMENTAL RESULTS
In this section, we first conduct some ablation study to analyze the
influence of the parameters and network structures to the results.
Afterwards, we compare our results with previous methods in both
visual quality and running time efficiency.

ACM Trans. Graph., Vol. 37, No. 6, Article 259. Publication date: November 2018.



Image Smoothing via Unsupervised Learning • 259:9

Input λf = 1, λe = 0.01 λf = 1, λe = 0.025 λf = 1, λe = 0.1 λf = 1, λe = 0.2

w/o Residual Learning λf = 0.1, λe = 0.1 λf = 0.25, λe = 0.1 λf = 1, λe = 0.1 λf = 2, λe = 0.1

Fig. 9. Effect of tuning parameters (Right) and ablation study for our residual learning (Left). The first row shows that with larger λe , we are able to maintain
some important image structures. The second row shows that via adjusting λf , we can gradually change the smoothness strength. As can be seen on the left,
the result predicted by the model without residual connection exhibits some noticeable color attenuation problems, which does not exist in our results with
residual image learning. Photo courtesy of Flickr user Rachel Hinman.

Table 1. Running time comparison between different methods (in seconds). Our method is significantly faster than the traditional methods (SGF [Zhang et al.
2015], BLF [Tomasi 1998], RGF [Zhang et al. 2014], Tree Filter [Bao et al. 2014], L0 [Xu et al. 2011], RTV [Xu et al. 2012], WLS [Farbman et al. 2008], SDF [Ham
et al. 2015] and L1 [Bi et al. 2015]), especially those based on optimization (L0, RTV, WLS, SDF, L1). It is also much faster than the recent methods [Fan et al.
2017; Liu et al. 2016; Xu et al. 2015] that train convolutional neural networks (CNN) as a regression tool to approximate traditional smoothing approaches. Due
to lack of current GPU implementation of most traditional methods, their running time is evaluated under a modern CPU. The deep learning based methods
are evaluated on GPU, meanwhile we also report the CPU time of our network structure with efficient multi-core implementation.

Traditional smoothing algorithms Approximation CNN Ours
SGF BLF RGF Tree L0 RTV WLS SDF L1 Xu Liu Fan GPU CPU

QVGA (320×240) 0.05 0.03 0.22 0.05 0.17 0.41 0.70 4.99 32.18 0.23 0.07 0.008 0.003 0.010
VGA (640×480) 0.15 0.12 0.73 0.42 0.66 1.80 3.34 19.19 212.07 0.76 0.14 0.009 0.004 0.011
720p (1280×720) 0.25 0.34 1.87 2.08 2.43 5.74 13.26 66.14 904.36 2.16 0.33 0.010 0.005 0.012

6.1 Ablation Study
Effect of parameter control. In out method, the main parameters

to tune are λf and λe . Here we analyze the results of our network
trained under different settings of these two parameters, and such a
group of visual results are shown in Figure 9. As can be seen from
the first row, altering weight of edge-preserving term λe influences
the image structures. From the second row, tweaking the weight
for flattening term λf controls the smoothness of predicted im-
ages. While enhancing the smoothness with a large λf , we observe
gradually destructed structures, e.g. the ground tiles.

Effect of residual image learning. We analyze the importance of
residual image learning by comparing the results with and without
this component in our network. As shown in Figure 9, the smooth
image generated without residual learning contains some obvious
color degradation issues. It appears more orange compared to the
raw input image. In contrast, the smooth images predicted with our
complete network structure with residual image learning dose not
have this issue, as shown in Figure 9. For the image smoothing task,
the input and output image should be highly correlated. However, it
can be difficult to maintain well the color information in the image
after many convolution operations in a deep neural network like

ours. Thus we propose to learn the residual image and combine it
with input image to resolve this issue.

6.2 Comparison with Previous Methods
We compare the proposed method with previous ones in terms of
the smoothing effect and speed. More comparisons on different
applications can be found in Section 7.

Smoothing effect comparison. Figure 2 compares the smoothing
results of our method and ten existing methods: [Zhang et al. 2015]
(SGF), [Ham et al. 2015] (SDF), [Bi et al. 2015] (L1), [Cho et al. 2014]
(BTLF), [Min et al. 2014] (FGS), [Zhang et al. 2014] (RGF), [Xu et al.
2012] (RTV), [Xu et al. 2011] (L0), [Farbman et al. 2008] (WLS) and
[Tomasi 1998] (BLF). Note that these algorithms may be designed
for different applications thus their goals may be slightly different.
Compared to these methods under this difficult example, our method
produced outstanding edge-preserving flattening result: it not only
achieved pleasing flattening effects for regions of low amplitude
(e.g. the sea), but also well preserved the high-contrast structures,
especially the thin but salient edges (e.g. the ropes of the paraglider).
To our knowledge, there is no benchmark or dataset to quanti-

tatively evaluate the performance of image smoothing algorithms.
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Image abstraction Pencil drawing

Input WLS L0 Ours WLS L0 Ours B

Fig. 10. Comparison of the image abstraction (Column 2-4) and pencil sketching (Column 5-7) results between our method and previous image smoothing
methods WLS [Farbman et al. 2008] and L0 [Xu et al. 2011]. With our learned edge-preserving image smoother, the slender but important image structures
such as the lamp wires and twigs are well preserved, rendering the stylized images more visually pleasing. Moreover, we also demonstrate the binary edge
map B detected by our heuristic detection method, which shows consistent image structure with our style image. Note that binary edge maps are only used in
the objective function for training; they are not used in the test stage and are presented here only for comparison purpose.

Visual perception is still the principal way for evaluation. To demon-
strate the robustness of our method and its good performance for
natural images with vastly different contents and capturing condi-
tions, we present the visual results on over 100 images without any
parameter tweaking for any particular images in the supplemental
material.

Running time comparison. Table 1 compares the running time of
our method and some previous methods, including both traditional
image smoothing algorithms [Bao et al. 2014; Bi et al. 2015; Farbman
et al. 2008; Ham et al. 2015; Tomasi 1998; Xu et al. 2011, 2012; Zhang
et al. 2015, 2014] and some recent methods [Fan et al. 2017; Liu et al.
2016; Xu et al. 2015] that apply neural networks to approximate
the results of the existing smoothing algorithms. Traditional image
smoothing methods are based on either filtering techniques [Bao
et al. 2014; Ham et al. 2015; Tomasi 1998; Zhang et al. 2014] or
mathematical optimization [Bi et al. 2015; Farbman et al. 2008; Ham
et al. 2015; Xu et al. 2011, 2012]. While the latter category draws
much attention in recent years and often produces quality results,
the optimization procedure (e.g. solving large-scale linear systems
iteratively) can be very time-consuming. For example, the state-
of-the-art method of [Bi et al. 2015] takes about 15 minutes to
process a 1280×720 image. Compared to these methods, ours runs
significantly faster. It takes only a few milliseconds for a 1280×720
image at the aid of GPU. However, even on CPU, with efficient
parallel implementation of our network structure4, it still runs in at
most tens of milliseconds, facilitating real-time applications.

4Our CPU version is implemented in MXNet facilitated with the NNPACK module.

Compared to the neural network approximators [Fan et al. 2017;
Liu et al. 2016; Xu et al. 2015]5, our method not only generates
novel, unique smoothing effects that allow better results in various
applications (see Section 7), but also has a faster running speed. Note
except for running a neural network, [Xu et al. 2015] also employs
a post-processed optimization step and [Liu et al. 2016] leverages a
recursive 1D filter, both of which slows down their whole algorithm.

7 APPLICATIONS
In this section, we demonstrate the effectiveness and flexibility of our
image smoothing algorithm with a range of different applications
including image abstraction, pencil sketching, detail magnification,
texture removal and content-aware image manipulation. The tai-
lored methods for these different applications mainly differ in the
guidance edge maps used in training the network: the former three
applications use the local gradient based edge map (per Equation 3)
similar to the previous experiments, while the latter two modify
them to achieve particular effects. For all the applications we use
the images in the PASCAL VOC dataset [Everingham et al. 2010]
for training.

7.1 Image Abstraction and Pencil Sketching
Edge-preserving image smoothing can be used to stylize imageries.
For example, [Winnemöller et al. 2006] proposed to abstract imagery
by simplifying the low-amplitude details and increasing the contrast
of visually important structures with difference-of-Gaussian edges.
Following previous works of [Farbman et al. 2008; Xu et al. 2011],
we replace the iterative bilateral filter in [Winnemöller et al. 2006]
5The running time of [Fan et al. 2017] reported in their paper includes both generating
images of particular sizes (per Table 1) and running the network. We excluded the
former for a fair comparison, thus their numbers are lower than reported.
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Input image BLF smooth WLS smooth L0 smooth FGS smooth Ours smooth

LLF enhance BLF enhance WLS enhance L0 enhance FGS enhance Ours enhance

Fig. 11. Detail magnification results of our method compared with previous image smoothing algorithms LLF [Paris et al. 2011], BLF [Tomasi 1998],
WLS [Farbman et al. 2008], L0 [Xu et al. 2011] and FGS [Min et al. 2014]. In this example, the top row shows the smooth base layers obtained via image
smoothing, while the bottom one demonstrates the enhancement results. As can be seen, our algorithm does not over-sharpen the image structures in the
smooth image and achieves visually pleasing detail exaggeration effects. Zoom in to see the details. Photo courtesy of Flickr user Sheba_Also.

with our learned edge-preserving image smoother, and decorate
the extracted edges with random sketches in different directions
to generate pencil drawing pictures. Furthermore, the smoothed
images are combined with the pencil drawing picture to generate
an abstract look [Lu et al. 2012].
Figure 10 presents the image abstraction and pencil sketching

results of different methods on two examples. Our method clearly
excelled at preserving important image structures, thanks to the
proposed energy function which has an explicit edge-preserving
constraint. For example, the lamp wires in the first example can be
clearly seen in our smoothing results, while they are not well pre-
served by other methods. Note that these structures are semantically
meaningful, without which the images look strange. The abstrac-
tion and pencil sketching results of our method are clearly more
satisfactory. In the second example, the tree branches are small and
thin, but are still visually prominent in this image. Our method well
kept the tree structure, while [Farbman et al. 2008] only preserved
the limbs and [Farbman et al. 2008] broke some thin branches into
pieces.

Note to further overcome the over-sharpened effects, we expand
the image region regularized by Lplarдe norm to its surrounding
7×7 pixel neighbourhood.

7.2 Detail Magnification
The effect of image detail magnification can be achieved by super-
posing a smooth base layer and an enhanced detail layer, the latter
of which can be obtained by image smoothing algorithms. After
extracting the smooth layer, the detail layer can be obtained as the
difference between the original image and the smooth layer, which
is then enhanced and added back to the smooth layer to generate
the final result. An ideal smoothing algorithm for this task should
neither blur nor over-sharpen the salient image structures [Farbman
et al. 2008], as either operation can lead to “ringing” artifacts in the
residual image, resulting in halo or gradient reversals in the detail-
enhanced images. Developing such a smooth filter is challenging as
it is difficult to determine the edges to preserve and diminish while
avoiding to both over sharpen and smooth these edges.
Figure 11 presents the results on such example obtained by our

method and previous ones [Farbman et al. 2008; Min et al. 2014;
Paris et al. 2011; Tomasi 1998; Xu et al. 2011]. It can be observed that
in the smoothed images the methods of [Min et al. 2014; Tomasi
1998; Xu et al. 2011] sharpened some edges that are blurry in the
original images due to out of focus. As a result, conspicuous gradient
reversal artifacts can be observed clearly on the top of enhanced
images. In contrast, [Farbman et al. 2008; Paris et al. 2011] and our
method produce better results without noticeable artifacts. Note
that the method of [Farbman et al. 2008] applied L2 regularizer over
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Input RTV RGF BTLF SGF SDF Ours

Fig. 12. Texture removal results of our method compared with state-of-the-art methods that address the texture removal problem: RTV [Xu et al. 2012],
RGF [Zhang et al. 2014], BTLF [Cho et al. 2014], SGF [Zhang et al. 2015] and SDF [Ham et al. 2015]. Our method can effectively remove the texture patterns
meanwhile well preserve the primary image structures. Photo courtesy of Emilie Baudrais and [Xu et al. 2012].

the entire image in their smoothness term to perfectly avoid over-
sharpening the structures. In our approach, the edge-preserving
term enforces a strong similarity between the major image struc-
ture of input and output images via minimizing their quadratic
differences, preventing the edges from being significantly blurred
or excessively sharpened. Moreover, the L2 norm is also partially
applied to the potentially over-sharpened regions to better avoid
gradient reversal artifacts in the exaggerated image. As such, high-
quality detail magnification results can be obtained as shown in
Figure 11.
Note the gradient reversal artifacts are very likely to happen

even if the smooth image is only slightly over-sharpened by either
numerical analysis or visual perception. And such a case is almost
unavoidable as for the edge-preserving filters that applies strong
regularization, since it always tends to over-sharpen the image more
or less. Therefore, we do not argue for the perfect detail exaggeration
results, but we are able to outperform most previous algorithms that
pursue strong smoothing effects [Min et al. 2014; Tomasi 1998; Xu
et al. 2011] with only little effort of tweaking our objective function.
To avoid the gradient reversal effects that are usually caused by

over-sharpening the smooth layer, we increase the plarдe balance
weight (α = 15), and release the constraint on p selection (c1 =
+∞, c2 = 0).

7.3 Texture Removal
The texture removal task we consider here aims at removing the
fine-scale repetitive patterns from primary image structures. In this

task, the smoothing algorithms should be made scale-aware, as the
textures to be removed may also have local gradients.

Our method can be easily tailored for this task. To grant a network
the ability to distinguish fine-scale textures from primary image
structures and smooth them out after training, we can simply set
the edge responses of the texture points on the guidance image
E(I ) to be zero. This way, the corresponding edge responses on
the guidance map of the output image E(T ) will always be larger.
Thus with slight modification on the constraint of Equation 8, a
L2 smoothness regularizer can be easily enforced on the texture
regions, such that the network will learn to diminish them. The way
to obtain the texture structure is elaborated in the supplemental
material.
Figure 12 shows two examples that contain different types of

texture patterns. We compare our results against state-of-the-art
methods of [Cho et al. 2014; Ham et al. 2015; Xu et al. 2012; Zhang
et al. 2015, 2014] that address the texture removal problem. It can
be seen that both [Zhang et al. 2014] and [Cho et al. 2014] tends to
blur some large-scale major structures, while the method of [Ham
et al. 2015] produces some noisy structure boundaries. Compared
to these methods, superior results are obtained by our method.

Since this task aims at diminishing textures that are very possibly
locally salient, we enlarge the plarдe weight (α = 20) and limit the
smooth region (h = 5).
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Input Background smoothed Saliency Map

Input Foreground enhanced Saliency Map

Fig. 13. Content-aware image manipulation with our method. The saliency
maps generated by [Zhang et al. 2017] is only employed in the training
stage for the optimization goal; they are not used in the test stage and are
presented here for comparison purpose. Our method can implicitly learn
saliency information and produce quality smoothing results accordingly.
Photo courtesy of Lisa Beattie and Albert Froneman.

7.4 Content-Aware Image Manipulation
Different from traditional methods, our proposed algorithm enables
us to achieve content-aware image processing, i.e., smoothing a
particular category of objects in the image.
In this section, we use the image saliency cue to demonstrate

content-aware image manipulations by our method. For example,
the proposed objective function can be slightly modified to achieve
background smoothing goal, which is smoothing out the background
regions for highlighting the foreground (i.e., the salient objects). To
this end, we mask out the edge responses of the background regions
in the guidance image E(I ) via the binary saliency masks obtained
by recent salient object detection algorithm [Zhang et al. 2017]. By
feeding the modified guidance image E(I ) to the proposed objective
function, the L2 norm regularizer can be applied on the background
regions during training. Afterwards, we can even set the smoothing
weights of foreground regions to relatively small values or even
zero to keep the foreground unmodified. Figure 13 presents some
example results from our method, from which we can see that our
trained network is capable of implementing content-aware image
smoothing very well.

Fig. 14. A partial failure case of texture-removal. Our algorithm doesn’t
succeed in extracting some detailed textures perfectly such as the eyes of
the two smaller fishes. Photo courtesy of Flickr user Chris Beckett.

Alternatively, our algorithm are also able to smooth out fore-
ground regions via a similar strategy, such that a foreground en-
hancement effect can be achieved via the approach described in
Section 7.2. Figure 13 demonstrates very visually-pleasing exagger-
ation effect for the foreground objects via our approach.
Note in this application, the smoothness effects and saliency in-

formation are jointly learned within our network, while the latter
information is reflected in the predicted smooth image. All these re-
sults are obtained solely by our trained network without any pre- or
post- processing. We set h in Equation 5 as 5 to limit the smoothness
only within either the foreground or background region.

8 CONCLUSION
In this paper, we have presented an unsupervised learning approach
for the task of image smoothing. We introduced a novel image
smoothing objective function built upon the mixture of a spatially-
adaptive Lp flattening criterion and an edge-preserving regularizer.
These criteria not only lead to state-of-the-art smoothing effects
as demonstrated in our experiments, but also grant our method
the flexibility to obtain different smoothing effects within a single
framework. We have also shown that training a deep neural network
on a large corpus of raw images without ground truth labels can
adequately solve the underlying minimization problem and gener-
ate impressive results. Moreover, the end-to-end mapping from a
single input image to its corresponding smoothed counterpart by
the neural network can be computed efficiently on both GPU and
CPU, and the experiments have shown that our method runs orders
of magnitude faster than traditional methods. We foresee a wide
range of applications that can benefit from our new pipeline.

8.1 Limitations and Future work
Our algorithm relies on some additional information to optimize the
objective function during training, such as the detected structures
or textures. Currently we employ some simple heuristic methods
to detect the structures, and imperfect detection can influence the
smoothing results. Figure 14 shows an example where our algo-
rithm fails to extract some detailed textures perfectly. This issue can
mitigated by introducing moderate effort of human interaction for
refining the structure maps of the training data, or by synthesizing
training images with separate textures and clear images similar to
[Lu et al. 2018]. Developing more advanced detection algorithms is
also one of our future works.
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Due to the adaptively changed and spatially variant Lp flattening
term and extra input information required for optimization, the opti-
mization is complex and very challenging for traditional numerical
solvers. To our knowledge, this is the first attempt of treating deep
network as a numerical solver in the image smoothing field. In the
future, we also would like to explore more complex and different
tasks, such as multi-image or video processing.
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