
ADeLA: Automatic Dense Labeling with Attention for
Viewpoint Shift in Semantic Segmentation

Hanxiang Ren1* Yanchao Yang2†* He Wang3‡ Bokui Shen2

Qingnan Fan4‡ Youyi Zheng1† C. Karen Liu2 Leonidas Guibas2
1Zhejiang University 2Stanford University 3Peking University 4Tencent AI Lab

{hanxiang.ren,youyizheng}@zju.edu.cn {yanchaoy,karenliu,guibas}@cs.stanford.edu
hewang@pku.edu.cn bshen88@stanford.edu fqnchina@gmail.com

Abstract

We describe a method to deal with performance drop in
semantic segmentation caused by viewpoint changes within
multi-camera systems, where temporally paired images are
readily available, but the annotations may only be abun-
dant for a few typical views. Existing methods alleviate
performance drop via domain alignment in a shared space
and assume that the mapping from the aligned space to
the output is transferable. However, the novel content in-
duced by viewpoint changes may nullify such a space for
effective alignments, thus resulting in negative adaptation.
Our method works without aligning any statistics of the im-
ages between the two domains. Instead, it utilizes a novel
attention-based view transformation network trained only
on color images to hallucinate the semantic images for the
target. Despite the lack of supervision, the view transforma-
tion network can still generalize to semantic images thanks
to the induced “information transport” bias. Furthermore,
to resolve ambiguities in converting the semantic images to
semantic labels, we treat the view transformation network
as a functional representation of an unknown mapping im-
plied by the color images and propose functional label hal-
lucination to generate pseudo-labels with uncertainties in
the target domains. Our method surpasses baselines built
on state-of-the-art correspondence estimation and view syn-
thesis methods. Moreover, it outperforms the state-of-the-
art unsupervised domain adaptation methods that utilize
self-training and adversarial domain alignments. Our code
and dataset will be made publicly available.

1. Introduction
Parsing the environment from multiple viewing angles

to arrive at a comprehensive understanding of the surround-
ings is critical for autonomous agents, assistive robots, and
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Figure 1. (a): Multiple cameras towards different viewpoints can
help autonomous or assistive agents to better understand the scene.
However, the performance of the semantic segmentation network
trained on the forward view (typical view of existing datasets)
drops sharply when tested with viewpoint shifts (Tab. 5). (b):
Adaptation gain obtained by state-of-the-art methods across dif-
ferent viewpoints. Our method consistently shows positive gains
and works robustly towards substantial viewpoint change,

AR/VR equipment (Fig. 1a). These multi-camera systems
can capture temporally paired data in practice from different
viewpoints, and the need to train a scene parsing network
that performs well at multiple viewpoints is key to estimat-
ing traversable surfaces and preventing accidents. How-
ever, viewpoint changes across cameras induce significant
domain gaps – a scene parsing network trained with anno-
tations in one view often encounters a large performance
drop on another (Tab. 5). We aim to reduce this perfor-
mance drop by transporting semantic information from the

1image credits: NASA, Boston Dynamics and HTC



views with rich annotations (source) to views with no avail-
able annotation (target) utilizing temporally paired images
readily available from multi-camera systems.

Most methods dealing with domain gaps build on the
idea that an alignment in a shared latent space helps the
task-specific network trained in the source domain general-
ize to the target. Despite its effectiveness, domain alignment
generally assumes (sufficient) invariance exists for the task,
which can be computed through the alignment so that the
mapping from the aligned space to the output is transferable
across domains (Fig. 2a & 2b). However, the domain dis-
crepancy we consider here is mainly the content shift caused
by the viewpoint change (Fig. 2c). As dense scene parsing
(semantic segmentation) is viewpoint elevation-dependent,
any alignment that learns away viewpoint will result in (in-
sufficient) invariances which are not adequate or suitable for
the task, thus inducing negative adaptation (Fig. 1b).

We break this conundrum by hallucinating the target se-
mantic images using their source counterparts. Our method
employs a view transformation network that outputs the tar-
get semantic image, conditioned on a source semantic im-
age and a pair of temporally aligned regular color images.
The hallucinated semantic images are then converted to se-
mantic labels to adapt the task network.

However, without a proper inductive bias, the view trans-
formation network would completely fail on semantic im-
ages due to their different structures. We propose that the
right inductive bias is to encourage learning spatial trans-
portation instead of transformation in color space. Further,
we introduce a novel architecture for view transformation
where the desired inductive bias is injected via an attention
mechanism. To combat noise in the hallucination and better
decode the semantic labels, we treat the view transforma-
tion network as a functional representation of an unknown
mapping signified by the color images. Accordingly, we
propose a functional label hallucination strategy that gener-
ates the soft target labels by taking in the indicator functions
of each class. The proposed decoding strategy improves the
label accuracy by a large margin and makes the labels more
suitable for adaptation by incorporating uncertainties.

Due to the lack of datasets in semantic segmentation
whose domain gaps are mainly from viewpoint change, we
also propose a new dataset where the viewpoint is varied
to simulate different levels of content shift (Fig. 7). To our
best knowledge, the problem we study here is largely under-
explored. To validate, we perform a comprehensive study
of various state-of-the-art methods, including dense corre-
spondence estimation, novel view synthesis, and unsuper-
vised domain adaptation (UDA) methods. We demonstrate
the effectiveness of our method by showing the best adapta-
tion gains across different target domains, even for perpen-
dicular viewing angles. Our contributions are:

• A benchmarking of state-of-the-art UDA methods for

semantic segmentation on viewpoint shifts.
• A novel architecture for semantic information hal-

lucination trained with only RGB images and an
uncertainty-aware functional decoding scheme.

• A state-of-the-art method that deals with performance
drops in semantic segmentation caused by viewpoint
shifts for multi-camera systems.

2. Related work
We focus on unsupervised domain adaptation (UDA)

methods for the pixel-level prediction task of semantic
segmentation. The core ingredient of UDA is to reduce
the domain gap between the source and the target data
[2,9,14,18,34,55], where the domain gap can be measured
by the maximum mean discrepancy [17, 28] or central mo-
ment discrepancy [61]. Deep learning based methods resort
to adversarial measurements, where discriminator networks
are used to confuse the two domains [24, 31, 40, 43, 44, 51]
in a shared feature space. In contrast to classification, fea-
ture space alignment is much less effective for pixel-level
prediction tasks like semantic segmentation [29, 41], due to
the difficulties in keeping the aligned features informative
about the spatial structure of the output.

The recent success of unsupervised domain adaptation
for semantic segmentation mainly relies on image-to-image
translation [27, 60, 71] where the goal is to reduce the style
difference between domains while preserving the underly-
ing semantics [20, 26, 66]. Multi-level feature alignment is
proposed [58] and [19] introduces intermediate styles that
gradually close the gap. A disentanglement of texture and
structure is also beneficial [4], and [23] performs style ran-
domization to learn style invariance. To ease the difficulty
in adversarial training, [59] proposes a style transfer via
Fourier Transform while enforcing semantic consistency.
On the other hand, [12, 13, 30, 56, 65] propose class-wise
alignments, given that each of the semantic classes may pos-
sess a different domain gap. Similarly, [49] proposes patch-
wise alignment, and [21] utilizes local contextual-relations
for a consistent adaptation. [22] also performs alignment on
consistently matched pixels among source and target im-
ages. The alignment can also be done in the output space
[53], or in a curriculum manner. For example, [33] employs
inter and intra domain adaptation with an easy-to-hard split,
and [25] pre-selects source images with similar content to
the target. With aligned domains, self-training using pseudo
labels can be utilized to further close the gap [26, 59, 64].

Our method tackles the domain gap caused by different
camera views, which renders the image space alignment in-
effective as the domain gap is mainly content shift but not
the style difference. Unlike cross-view image classification
[1, 10, 16, 37, 63], aligning domains of different viewpoints
for pixel-level prediction tasks is ill-posed, since the task is
indeed view dependent [7]. The most relevant are [8, 11],



(a) (b) (c)
Figure 2. (a): image classification where image style and viewpoint are nuisances [36, 39]; (b): semantic segmentation at similar views
where image style is the major nuisance for domain gaps [20, 35]; (c): semantic segmentation with changing view (e.g., forward to
downward), a nuisance that should not be aligned away. We focus on viewpoint shifts in semantic segmentation.

Figure 3. Left: a network ψ is trained to hallucinate color im-
ages from the source to the target and is never exposed to semantic
images; Right: ψ is directly applied on the corresponding source
semantic image to hallucinate the target semantic image to provide
training labels for the target domain.

which again resort to adversarial domain alignment. Ad-
ditionally, [8] requires known camera intrinsics and extrin-
sics. Note, both assume the viewpoint change is small or
there is a large overlap between the two views, therefore
the applicability to a broader setting is limited, whereas
our method is not constrained by any of these assumptions.
Also related is novel view synthesis [6, 15, 46, 69], partic-
ularly, single view synthesis [50, 57, 70], where multiple
posed images of the same scene are needed during train-
ing. Hence, if the goal is to synthesize semantic images of
a different view, the target domain’s semantic images are
needed, which, however, are not available in our problem
setting. Another related topic is dense correspondence esti-
mation [48,54,67], which can be used to warp labels to help
adaptation between domains.

3. Method

Let Ds = {(xsi , ysi )}ni=1 be the source dataset collected
at the source viewpoint s, where xsi ∈ Rh×w×3 is an RGB
image, and ysi ∈ Rh×w×3 is the corresponding semantic
image (Fig. 3) that is usually used for visualizing the se-
mantic labels ȳsi ∈ Rh×w×k (we use the semantic image
ysi or labels ȳsi interchangeably depending on the context).
Further, let Dτ = {xτi }ni=1 be the target dataset collected
at the target viewpoint τ , whose semantic label/image yτi
is missing. In order to make our method generally appli-
cable, we assume no knowledge about the viewpoints s, τ
except that xsi and xτi are captured simultaneously. Note,
this is the only assumption we make since synchronization
in multi-camera systems is default. Therefore, the domain
gap between Ds and Dτ comes from viewpoint shifts. How-
ever, the synchronized source and target view images may
or may not share co-visible regions, which is unknown and

determined by the actual difference between the two views.
Please see Fig. 7 for examples of the source and target do-
mains with various viewpoint shifts.

Similar to unsupervised domain adaptation, our ultimate
goal is to train a semantic segmentation network ϕ : x → y
given only the annotations from the source dataset Ds so
that ϕ can perform well on the target dataset Dτ with the
presence of viewpoint shifts. So the domain gap we are
considering here is mainly the content shift induced by dif-
ferent viewing angles, i.e., the discrepancy in the output,
which violates the assumptions made by most unsupervised
domain adaptation methods that rely on either image space
or feature space alignment, or both [23,25,30,53,59,64,65].
Instead of aligning distributions of any kind between the
two domains, which may result in negative adaptation gains
(Fig. 1b), we resort to a network that can hallucinate the tar-
get view semantic images (yτ ) from the source (ys) guided
by the color images (xs, xτ ). Specifically, we want to have
a network ψ : y × x× x → y, whose output ψ(ysi ;x

s
i , x

τ
i )

can be used as pseudo ground-truth for improving ϕ to make
better predictions on Dτ .

The whole pipeline can be summarized as 1) train the
view transformation network ψ using temporally aligned
source and target view color images to learn information
transport between the two domains; 2) once ψ is trained,
we use it to hallucinate target view semantic images/labels;
3) the hallucinated target labels are then used to train the se-
mantic segmentation network ϕ to adapt to the target views.
During testing, i.e., semantic inference, ψ is not in opera-
tion since we can apply the adapted semantic segmentation
network ϕ directly on the test images from the target do-
main to make predictions. Thus the source images are not
required. Please refer to Fig. 4 for an overview.

3.1. Auto-labeling with attention

Looking at a pair of color images xsi , x
τ
i shown in Fig. 3,

one could hallucinate to some extent the target semantic im-
age yτi associated with xτi given the source semantic image
ysi . On the other hand, if a network learns how to hallu-
cinate the target image xτi from the source image xsi , we
would expect it to make a reasonable hallucination of the
target semantic image yτi from the source semantic image
ysi , since xsi and ysi are simply two different appearances of
the same geometry. However, without a proper inductive
bias, a network trained to hallucinate color images between



Figure 4. The proposed architecture for hallucinating arbitrary target views together with the whole pipeline for adapting the semantic
segmentation network to target domains where labeling is missing. In stage 1, the view transformation network ψ is only trained on color
images, and is used for generating pseudo labels in the target domain in stage 2. The semantic segmentation network ϕ is then adapted to
the target view in stage 3 using the target pseudo labels.

different views may fail completely when tested on seman-
tic images due to their statistical difference.

To validate, we train a UNet [38] ψunet to hallucinate
xτi from xsi using an L1 reconstruction objective at fixed τ .
After training, we check if ψunet(ysi ) is similar to yτi . As
shown in Fig. 5b (2nd column), the UNet trained on color
images does not generalize well on semantic images, which
confirms the difficulties of hallucinating the novel appear-
ance of a seen view, even if the geometry is unchanged.

We propose that the key to generalizing to novel appear-
ance is to bias the view transformation network towards
learning spatial transportation instead of color transforma-
tion. For example, the network needs incentives to learn
where the color should be copied to in the target view in-
stead of how the color should change to form the target
view. If so, the view hallucination should generalize to
any novel appearance since the color transformation may
depend on domains while the transport conditioned on the
same views and geometry is invariant.

Biasing towards information transport with atten-
tion. The self-attention mechanism proposed in [52] rep-
resents a layer that processes the input by first predicting a
set of keys (K) and a set of queries (Q), whose dot-products
are then used to update a set of values (V ) to get the output
(updated values):

ATTN(Q,K, V ) = softmax(
QKT

√
dk

)V

By examining how a single output value v′i is computed,
we can see why attention helps to bias towards transport
that facilitates the generalization of the hallucination. Let
qi be the corresponding query for v′i, and [k1, k2, ..., km] be
the keys, then v′i =

∑m
j=1 αj · vj , with αj’s the elements

of softmax([k1q
T
i , k2q

T
i , ..., kmq

T
i ]) (scaling factor omitted

for simplicity). Note if qi is extremely similar to a certain
key, e.g., kj∗ , but dis-similar to the other keys, we may write
v′i ≈ vj∗ . This signals that the attention is transporting
values from different locations to i through the weighted
summation. In the extreme case, it can even stimulate point-
wise transportation of the values.

To verify the effectiveness of attention in hallucinating
labels (novel appearance), we simply reorganize the tunable
parameters in the UNet ψunet such that the convolutional
layers near the bottleneck are now replaced by attention
layers of the same capacity. We term it ψattn and train it
to hallucinate the target color images from the source color
images, i.e., x̂τi = ψattn(xsi ), and test it on the semantic
images. As shown in Fig. 5b (3rd column), ψattn can hal-
lucinate reasonable target semantic images even it is only
trained on color images. Given the effectiveness of the in-
ductive bias introduced by the attention mechanism in se-
mantic information hallucination for a single target view,
we now detail our view hallucination network for multiple
target views and the technique that we propose to generate
soft labels for adaptation to different target domains.

3.2. Labeling multiple target domains
Here we specify the proposed network architecture that

can seamlessly work for different target views, e.g., the
target domain is a mixture of views, which eliminates the
need to train separate networks. Again, the view trans-
formation network ψ(xV ;xK , xQ) takes in a pair of color
images, which guide ψ to predict the target view from
the source whose appearance is determined by either the
source color image or the source semantic image, i.e., x̂τi =



(a) (b)
Figure 5. (a): source and target color images for training the view
transformation network ψ; (b): applying ψ on source semantic
images. The hallucinated semantic images by the network without
attention (“w/o attention”) are inaccurate and not consistent with
the target images; however, the hallucinations from the network
with attention (“with attention”) are sharp and more precise.

ψ(xsi ;x
s
i , x

τ
i ) (stage 1) or ŷτi = ψ(ysi ;x

s
i , x

τ
i ) (stage 2). As

illustrated in Fig. 4 (stage 1), we let xQ = xτi , xK = xsi and
xV = xsi , which are lifted to query, key and value features
through the following procedure:

Q0 = ξQ(xQ)[1;upos; vpos]

K0 = ξK(xK)[1;upos; vpos]

V 0 = ξV (xV )

here ξQ, ξK , ξV are separate encoders with strided convo-
lutions to reduce the spatial dimensions of the features,
and upos, vpos are fixed positional encodings that repre-
sent the normalized image grids (horizontal and verti-
cal), i.e., for coordinate (m,n) we have upos(m,n) =
n/w, vpos(m,n) = m/h, with h and w the height and
width of the image. These lifted features are processed by
L of the proposed information transport layer:

Ql = FFNlQ(Q
l−1) (1)

Kl = FFNlK(Kl−1) (2)

V̂ l = ATTN(Ql−1,Kl−1, V l−1W l) (3)

V̄ l = FFNlV 1(V̂
l) + V l−1 (4)

V l = FFNlV 2(V̄
l) + V̄ l (5)

xlQ = ξD(V
l) (6)

where FFNlQ,FFN
l
K are two feed-forward networks of

downsampling and upsampling convolutional layers with
layernorm to maintain the size of the updated keys and
queries. And the feed-forward networks FFNlV 1,FFN

l
V 2

are simply convolutional layers whose stride is equal to one.
Using two FFNV with skip connections can improve the
convergence speed with a light network capcity increase.
We ablate on update schemes of K,Q in the experiments.
Note, for each V l, we apply the shared decoder ξD to map
it to the image space, and xLQ will be the final output of the
proposed view transformation network ψ.

Training loss and data augmentation. For training the
network ψ(xV ;xK , xQ) in Fig. 4 (stage 1), we apply color

jittering to the input images. Specifically, the hue of xsi , x
τ
i

are perturbed by a random factor to get xQ and xK , and by a
different factor to get x̄Q and xV , where x̄Q is the expected
output of ψ(xV ;xK , xQ). Different hue perturbations can
help prevent information leakage, since now xQ (input) and
x̄Q (expected output) are not identical, yet the consistency
between xV and x̄Q is preserved to enable meaningful hal-
lucination. In addition, we apply the same color permuta-
tion to xV and x̄Q, to further prevent information leakage
from xQ to the output. More details can be found in the
appendix. The training loss for ψ is:

Lψ =
∑

xQ∈{Dτ}

L∑
l=1

λl∥xlQ − x̄Q∥1 (7)

with λl the weighting coefficient for the l-th layer’s output
xlQ, which is decoded from V l, and we set λl = 2−(L−l) so
that early predictions are weighted less.

3.3. Functional label hallucination
Given the trained ψ, we can hallucinate the target seman-

tic images for xτi ’s, i.e., ŷτi = ψ(xV ;xK , xQ), by setting
xQ = xτi , xK = xsi and xV = ysi . We can then con-
vert the hallucinated semantic images into semantic labels
(integers) via nearest neighbor search in the color space to
adapt the semantic segmentation network (ϕ) to the target
domains. However, the converted labels sometimes could
be wrong due to noise in the predicted color ( Fig. 6 (3rd,
4th columns)).

To resolve the ambiguities, we propose the follow-
ing functional label hallucination by treating ψ(·;xsi , xτi )
as the functional representation of an unknown mapping
T (xsi , x

τ
i ) : Ωs → Ωτ conditioned on the color images

xsi , x
τ
i . Here Ωs,Ωτ represent the source and target image

domains/grids. According to [32], if T is a bijective map-
ping between Ωs and Ωτ , the actual mapping T can then be
recovered from ψ(·;xsi , xτi ) by checking its output of indi-
cator functions of the elements in Ωs. However, recover-
ing the underlying unknown mapping T is unnecessary in
our scenario, and, indeed, we do not have any constraints
that T is bijective. Instead, we utilize the functional rep-
resentation ψ(·;xsi , xτi ) to find regions in Ωτ that share the
same label with those in Ωs. Let 1ysi=c be the indicator
function of the regions that are classified as class c, then
ŷτic = ψ(1ysi=c;x

s
i , x

τ
i ) indicates the regions of class c in

Ωτ . And the hallucinated labels can be written as:

ŷτi = softmax(ψ(1ysi=1;x
s
i , x

τ
i ), ..., ψ(1ysi=C ;x

s
i , x

τ
i ))

(8)
with C the number of semantic classes, and now the hal-
lucinated target view labels ŷτi represent the probabilistic
distributions over the C classes for each pixel.

Adapting to target domains. With the functional hallu-
cination strategy, we can avoid performing a nearest neigh-
bor search in the color space, which improves the accuracy



Figure 6. Effectiveness of the proposed functional hallucination
strategy. The target semantic images (3rd) are hallucinated from
the source counterparts (2nd), which are decoded into semantic la-
bels using nearest neighbor search (4th) or the proposed functional
strategy (5th) with uncertainties (6th).

of the generated labels even when the hallucinated color is
noisy (Fig. 6 (5th column)). Moreover, the soft probabilistic
labels (Fig. 6 (6th column)) are more suitable for adapting
the semantic segmentation network ϕ to the target domains,
avoiding errors of hard labels when the hallucination is of
low confidence. We then finetune ϕ for each target domain
using the target dataset Dτ = {(xτi , ŷτi )} augmented with
the soft labels:

Lϕ =
∑
i

H(ŷτi , ϕ(x
τ
i )) (9)

where H is the cross-entropy between the network predic-
tion and target pseudo labels.

4. Experiments

4.1. Data generation
Due to the lack of benchmarks for evaluating UDA meth-

ods under viewpoint shifts, we propose a new dataset whose
source and target domains are generated by varying camera
elevation and viewing angles. Moreover, we explicitly con-
trol the viewpoint shifts, such that we can quantitatively as-
sess the adaptation performance with respect to the degree
of domain gaps. We resort to simulation for data collection
since 1) it is much easier to obtain semantic segmentation
ground-truth in simulation; 2) the degree of the domain gap
caused by viewpoint change is more controllable; and 3) it
is more friendly to the personnel who is in charge of the
data collection given the pandemic.

Furthermore, we maximize the realism of the generated
data by employing the Matterport3D dataset [3], which con-
tains 90 building-scale real-world scenes with pixel-wise
semantic annotations2. The scenes from Matterport3D are
then imported into the Habitat simulation platform [42] for
our data generation. Specifically, we first randomly sample
two states in the scene, with one state (the position and yaw
angle of a virtual camera) representing the starting state,

2we completed the Terms of Use agreement form and obtained consent
from the creators, and the data does not contain any privacy information

and the other the end state. We then perform collision-free
path planning between these two states. The resulted path
is accepted if it has a length larger than 15 path points, and
images at each point along the path are collected. To syn-
thesize the domain gaps, we set the pitch angle of the virtual
camera to 0◦ for collecting the source domain videos (anno-
tations), which resembles the working viewpoint for seman-
tic segmentation networks trained on existing scene parsing
datasets [45, 47, 68]. Moreover, we increase the pitch angle
of the virtual camera by 10◦ (up to 90◦) for collecting target
domain videos (no annotations), which results in 9 different
target domains. For each domain, we collect 13,500 train-
ing images and 2,700 test images with resolution 384×512.
Please see Fig. 7 for samples from the collected datasets.

4.2. Implementation details
We adapt the UNet structure [38] with reduced capacity

and layernorm activation to construct the feed-forward net-
works FFNQ and FFNK . Similar to [62], W is a convo-
lutional layer with kernel size 1×1, FFNV 1,FFNV 2 con-
sist of one and two convolutional layers respectively. Both
FFNV 1 and FFNV 2 use leakyrelu activation function. Net-
work ψ contains L = 8 attention modules. Training of ψ is
carried out on eight Nvidia V100 GPUs, with batch size 16.
We use the Adam optimizer with an initial learning rate of
1e-4 and momentums of 0.9 and 0.999. The training con-
verges after 10 epochs. We use the DeepLabv2 [5] with the
ResNet101 backbone as the semantic segmentation network
ϕ, which is initialized with the pre-trained weights on Ima-
geNet [25, 30, 53, 59, 65]. Soft labels for each target view τ
are hallucinated using Eq. (8). The semantic segmentation
networks ϕτ for each target domain are trained using Eq. (9)
with the Adam optimizer, a batch size of 6 and an initial
learning rate of 7.5e-5. The learning rate is then halved af-
ter 10 and 15 epochs. The training converges at 25 epochs.
To have a fair comparison with the state-of-the-art domain
adaptation methods that adapt from a single source domain
to a single target domain, we also train the segmentation
network for each target domain separately. We use mean
intersection-over-union (mIoU) as the metric. 3

4.3. Ablation study
Effectiveness of the proposed inductive bias. Quali-

tative comparisons in Fig. 5 show that the proposed spa-
tial transport inductive bias and the architecture facilitate
zero-shot semantic image hallucination. In Tab. 1 we quan-
titatively confirm its effectiveness and check how it extends
across different levels of viewpoint shift. Besides the color
transformation bias (“UNet”), we also test the inductive bi-
ases introduced by explicitly modeling the dense 2D corre-
spondence (“Flow”) and by explicitly modeling the image

3orientation within a horizontal plane, similarly, the pitch angle is the
orientation within a vertical plane



Figure 7. Samples from the proposed dataset (one source and nine target domains) for benchmarking unsupervised domain adaptation
methods under viewpoint shifts in semantic segmentation.

Target Domains

Method 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

UNet [38] 49.76 28.19 13.69 9.26 6.56 4.71 2.59 1.63 1.28
Flow [48] 33.04 27.59 22.72 19.36 17.02 14.21 11.55 9.67 8.34
RAFT [48] 70.62 61.25 53.92 42.54 18.17 9.36 7.57 6.24 5.58
3D [57] 28.16 22.12 18.35 15.80 13.14 11.22 9.20 6.61 2.86
ADeLA(S) 54.85 46.29 42.66 37.75 27.71 21.33 14.18 8.69 4.17
ADeLA(M) 48.42 41.87 35.73 30.39 24.11 17.40 11.79 8.82 7.34

UNet+F [38] 73.62 49.07 27.12 20.08 16.48 13.68 11.61 9.79 8.53
ADeLA(S)+F 70.07 67.63 58.62 54.33 47.45 37.81 28.39 19.78 15.17
ADeLA(M)+F 75.75 66.29 57.45 49.57 40.38 30.00 20.96 15.44 12.60

Table 1. Ablation study on different inductive biases for zero-shot
semantic image hallucination. Numbers are the mIoUs of the hal-
lucinated semantic labels on the training set of each target domain.

formation process in 3D (“3D”). For “Flow,” we adapt the
architecture of RAFT [48] and train it to estimate the flow
that reconstructs the target color image from the source, and
use the flow for warping the semantic labels. For “3D”,
we adapt the state-of-the-art single view synthesis frame-
work [57], and supply it with ground-truth camera poses for
semantic image synthesis. We report the performance of our
method under two settings: the single source to single target
setting (“ADeLA(S)”), and the the single source to multiple
targets setting (“ADeLA(M)”). The labels for “ADeLA(S)”
and “ADeLA(M)” are generated using the nearest neighbor
search. We also report the score of the warped labels using
the fully supervised RAFT model for reference.

We can make the following observations: 1) “UNet”
(color transformation) does not work at large viewpoint
shifts. 2) the 2D dense correspondence inductive bias
(“Flow”) works better for large viewpoint shifts, which ver-
ifies our proposal for biasing towards transportation. How-
ever, the comparison between “Flow” and “RAFT” shows
that the spatial correspondence learned from color images
can be erroneous, so “Flow” is much worse than “RAFT”
at small viewpoint changes. Moreover, “RAFT” is worse
than “Flow” at large viewpoint shifts, which indicates that
the exact dense correspondence may not be suitable for se-
mantic label hallucination. 3) The 3D inductive bias (“3D”)

does not perform well since the learned 3D representation
from color images does not generalize to semantic images.
4) Our model performs well across all target domains, due
to the proposed spatial transportation bias, and the capabil-
ity to hallucinate beyond exact correspondence.

Moreover, we show the quality of the semantic
labels hallucinated using the proposed functional la-
bel hallucination strategy (“UNet+F,” “ADeLA(S)+F,”
“ADeLA(M)+F”). As seen in Tab. 1 (bottom), functional
hallucination significantly improves the performance of
UNet and our models, demonstrating its effectiveness in re-
solving the ambiguities in the hallucinated semantic images.
Note, “Flow” and RAFT warp labels with explicit dense
correspondence, thus they are unable to take advantage of
the functional strategy. The same observation holds for
“3D”, whose 3D representation learned with color images
does not generalize even with ground-truth camera poses.

Effectiveness of the update scheme for K,Q. We
conduct experiments to investigate different K,Q update
schemes. The information transport layer uses UNet struc-
tures FFNK and FFNQ to update K,Q. To check the
effectiveness of the UNet structure, which performs spa-
tial downsampling and upsampling (feature resolution pre-
served), we replace them with several 1x1 convolutions
with the same capacity to maintain the spatial resolution
and update K,Q. Also, to confirm the need for updates
in K,Q, we remove all FFNK and FFNQ modules in our
model so that K,Q do not change across different layers.
As shown in Tab. 2, there is a significant performance drop
if we replace the proposed UNet structure with other op-
tions. These experiments confirm that updating K,Q is
necessary, and introducing spatial downsampling and up-
sampling while updating K,Q is not only more computa-
tionally efficient but can also improve the accuracy.

Number of information transport layers. We experi-
ment with the number L of information transport layers in
the view transformation network on source domain 0◦ and
target domain 30◦. The results are reported in Tab. 3. Users
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Figure 8. Qualitative comparison with competing methods on dif-
ferent target domains. RAFT [48], FDA [59], and CAG [65].

K,Q update scheme UNet 1x1 convs no update

mIoU 42.7 38.4 33.4

Table 2. Comparison between differentK,Q update schemes with
source domain 0◦ and target domain 30◦.

L 1 3 5 7 8

mIoU 35.24 39.73 40.27 41.93 42.66
#Params 15.8M 34.8M 53.8M 72.8M 82.3M
FPS 20.71 16.88 13.05 10.64 9.68

Table 3. Effects of the number of information transport layers.

Target Domains

Type 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

Soft 31.91 28.49 24.31 21.34 16.42 12.92 9.74 7.92 5.37
Hard 30.34 26.63 23.45 20.23 16.19 12.74 9.69 7.68 5.99

Table 4. Effects of using soft and hard labels for training ϕ.

can adjust L for a trade-off between the label quality and
label hallucination speed based on their actual budget.

Effectiveness of soft labels for training ϕ. We exper-
iment with both soft and hard labels for training the seg-
mentation network ϕ. The results are shown in Tab. 4.
Soft labels outperform hard labels across different view-
point shifts, which demonstrates the effectiveness of the es-
timated uncertainties as analyzed in Sec.3.3.

4.4. Benchmarking
We carry out an extensive study of state-of-the-art meth-

ods in reducing performance drops caused by viewpoint
shifts on semantic segmentation [22, 23, 25, 30, 33, 53, 59,
64, 65]. The benchmarking is reported in Tab. 5. Among
those methods, [25, 64] focus on self-training, [30, 33, 65]
perform class-wise and curriculum domain alignment, and
[23, 53, 59] align domains in the image/output space. We
also experiment with three best performing dense corre-
spondence estimation methods [48, 54, 67], and two single
view synthesis methods [57, 70] to generate target view la-
bels to help adapt the segmentation networks. All methods
are re-trained on the training sets of the proposed bench-
mark, and tested on the test sets of the nine target domains.
Our method consistently achieves positive adaptation gain
and performs much better than the other methods at large
viewpoint shifts. Note that FDA [59] performs better on
the target domain of 10◦ (small gap) due to its strong style
randomization mechanism. However, our method surpasses

Target Domains

Type Method 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

Baseline
Target Only 33.22 31.34 30.35 29.45 27.18 25.70 25.85 24.93 24.12
Source Only 27.90 20.24 12.22 7.63 4.41 2.53 1.80 1.53 1.53
UNet [38] 30.51 22.36 12.26 8.44 6.58 4.80 3.81 2.98 2.22

Dense
Corresp.
Est.

RAFT [48] 29.46 26.74 24.15 16.92 8.66 4.54 3.35 2.82 2.41
MFNet [67] 29.20 24.53 13.16 6.65 4.76 3.95 3.00 2.81 2.48
DICL [54] 29.62 26.45 22.01 17.75 6.25 4.44 3.40 2.75 2.49

UDA
(unpaired)

ProDA [64] 25.26 19.35 12.03 7.46 4.39 1.74 1.12 0.83 0.77
CLAN [30] 28.22 21.21 13.17 7.53 4.37 2.66 2.02 1.74 1.73
CAG [65] 27.17 22.22 15.05 8.57 5.24 2.43 1.83 1.50 1.54
FDA [59] 37.80 23.34 12.33 6.69 3.58 2.15 1.56 1.67 1.32
PLCA [22] 26.83 19.04 12.42 7.79 5.37 3.38 2.49 2.21 1.93
LTIR [23] 26.22 20.50 13.43 6.16 3.90 2.09 1.82 1.65 1.66
CCM [25] 28.26 19.48 10.56 4.92 2.78 1.50 1.14 0.95 0.90
Advent [53] 11.38 7.93 4.98 3.28 2.54 2.16 1.60 1.52 1.49
Intrada [33] 10.16 7.84 6.13 4.08 2.67 1.98 1.58 1.67 0.93

UDA
(paired)

ProDA [64] 20.61 17.82 10.38 6.71 4.11 1.85 1.11 0.91 0.90
CLAN [30] 25.41 18.33 10.61 5.91 3.37 2.19 1.71 1.57 1.58
CAG [65] 23.48 18.55 12.34 8.06 4.33 1.83 1.59 1.47 1.57
FDA [59] 30.83 16.46 11.39 6.9 3.69 2.17 1.74 1.84 1.69
PLCA [22] 24.86 19.49 12.36 8.63 5.52 3.70 2.84 2.26 2.04

Novel
View Syn.

AppFlow [70] 14.73 12.91 10.46 8.43 7.30 5.68 4.66 3.87 3.39
Synsin [57] 14.43 11.44 9.15 8.29 6.24 5.43 4.67 3.36 1.88

Info. Trans. ADeLA 31.91 28.49 24.31 21.34 16.42 12.92 9.74 7.92 5.37

Table 5. Quantitative comparison to state-of-the-art methods on
the proposed benchmark. Numbers are mIoU scores on the test set
of each target domain.

FDA on the remaining target domains without any data aug-
mentation in adapting the segmentation network. In or-
der to verify if the temporally aligned data is beneficial for
other methods, we select the top UDA methods and train
them also on paired source and target images. The results
in Tab. 5 show that the performance of these UDA meth-
ods even degrades compared to their unpaired counterparts.
This concludes that the comparison is fair and comprehen-
sive. Please see Fig. 8 for visual results.

5. Discussion
We tackle the performance drop caused by viewpoint

shifts in semantic segmentation. Experiments verify that
aligning statistics between domains in a shared space could
be detrimental due to the content shift across different view-
ing angles. Our method achieves higher adaptation gains,
especially at large viewpoint shifts. However, the adapta-
tion gain of our method also decreases towards the extreme
case. In our code release, we will specify allowable uses
of our system with appropriate licenses to address potential
ethical and societal concerns. In the future, we would like
to explore the use of temporal information to further reduce
the performance drop caused by extreme viewpoint shifts.
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Cord, and Patrick Pérez. Advent: Adversarial entropy min-
imization for domain adaptation in semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2517–2526, 2019. 2, 3, 6, 8

[54] Jianyuan Wang, Yiran Zhong, Yuchao Dai, Kaihao Zhang,
Pan Ji, and Hongdong Li. Displacement-invariant match-
ing cost learning for accurate optical flow estimation. arXiv
preprint arXiv:2010.14851, 2020. 3, 8

[55] Mei Wang and Weihong Deng. Deep visual domain adapta-
tion: A survey. Neurocomputing, 312:135–153, 2018. 2

[56] Zhonghao Wang, Mo Yu, Yunchao Wei, Rogerio Feris, Jin-
jun Xiong, Wen-mei Hwu, Thomas S Huang, and Honghui
Shi. Differential treatment for stuff and things: A simple un-
supervised domain adaptation method for semantic segmen-
tation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12635–12644,
2020. 2

[57] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin
Johnson. Synsin: End-to-end view synthesis from a sin-
gle image. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7467–
7477, 2020. 3, 7, 8

[58] Zuxuan Wu, Xintong Han, Yen-Liang Lin, Mustafa
Gokhan Uzunbas, Tom Goldstein, Ser Nam Lim, and Larry S
Davis. Dcan: Dual channel-wise alignment networks for un-
supervised scene adaptation. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 518–
534, 2018. 2

[59] Yanchao Yang and Stefano Soatto. Fda: Fourier domain
adaptation for semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4085–4095, 2020. 2, 3, 6, 8

[60] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. Dual-
gan: Unsupervised dual learning for image-to-image trans-
lation. In Proceedings of the IEEE international conference
on computer vision, pages 2849–2857, 2017. 2

[61] Werner Zellinger, Thomas Grubinger, Edwin Lughofer,
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