ADeLA: Automatic Dense Labeling with Attention for
Viewpoint Shift in Semantic Segmentation
(Supplementary Material)

1. Summary

This supplemental material provides more details on ex-
periments and datasets described in the main paper. We also
include additional experiments to analyze further and justify
our method.

In Sec. 2, we provide more sample data of our collected
datasets. In Sec. 3, we add more details of our training pro-
cess. In Sec. 4, we show more experimental results, includ-
ing standard deviation of our benchmarking results in Tab. 5
of the main paper, and qualitative results to demonstrate the
ability of our method to generalize to real-world images.

2. Additional samples from our dataset

We show more samples from our dataset in Fig. 5.

3. Additional training details

Here we present more details about data augmentations
used in our training for the view transformation network 1,
namely hue perturbation and color permutation.

3.1. Hue perturbation

The hue jittering factors are uniformly sampled from the
interval [—0.3,0.3] in all experiments. Please refer to the
first four columns in Fig. 2 for an illustration.

3.2. Color permutation

To apply color permutation, we first split the range of
the 8-bit color values, i.e., [0, 255] into B intervals of equal
length, and map each color value to the number of the inter-
val that this value falls in, i.e., quantization (Fig. 1). We per-
form this quantization for each channel of the color images.
To permute, we simply generate a random permutation of
the set {1, 2, ..., B}, which represents a one-one mapping
between the intervals. We then convert the images into a
permuted one using the colors indexed by this random per-
mutation. Examples of the color permutation are shown in
Fig. 2 (last two columns).

In our experiment, we use B = 8 and apply color per-
mutation only to xy and Z¢. Ideally, we can set B = 256,
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Figure 1. An example of color quantization.
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Figure 2. Data augmentation during training of the view trans-
formation network. Left to right: original source and target color
images (1st, 2nd columns); the hue perturbed key and query im-
ages (xx,xq); the hue perturbed and color permuted value and
ground-truth output images (zv, Zq).

but a smaller B can help improve the computational effi-
ciency. Hue perturbation can be considered as a global shift
in the H component in the HSV space. It may still be pos-
sible for the network to learn the shift by observing x5 and
zy. Compared to hue perturbation, color permutation fur-
ther increases the randomness of the color change and helps
the network predict appearance information solely from v .

4. Additional experiments

We demonstrate more visual comparisons of our method
with other top-performing baselines in Fig. 3.

4.1. Randomness in the training process

We report the randomness measured by the standard de-
viation of the mloUs of the baselines in Tab. 1.



Target Domains

Type Method 10° 20° 30° 40° 50° 60° 70° 80° 90°
Target Only 0.0497 03552 0.0355  0.1502 0.2832  0.1090  0.1262  0.2495  0.1168
Baseline Source Only ~ 0.2828  0.3185 02712  0.0441  0.0490 0.0795 0.0717  0.0502  0.0386
UNet [6] 02203 0.1504  0.1801 02470  0.6315 03635 03180 03233  0.1801
RAFT [7] 04650 02685 02757 09286  0.1513  0.1301  0.0755 0.0681  0.1358
Dense Corresp. Est. MEFNet [14] 0.4257 0.2540 0.0917 0.2274 0.0458 0.1353 0.0458 0.0351 0.0839
DICL [9] 0.1888  0.6264 09430 03081  0.0874 0.0709 0.0577 0.0252  0.0153
ProDA [12] 03995 02301  0.6920  0.4940  0.1732  0.1823  0.1418  0.0781  0.0874
CLAN [4] 02108 02501 03502  0.2030 02307 0.1229  0.0436  0.0163  0.0100
CAG [13] 0.6429 03958  0.4453 03989  0.4809  0.0635 0.0306 0.0265  0.0321
FDA [11] 0.6191 0.4400 0.0404 0.1803 0.1007 0.0513 0.0721 0.1234 0.0950
UDA (unpaired) PLCA[!] 0.2641 0.3963 0.5151 0.2474 0.2934 0.2943 0.2318 0.2046 0.1062
LTIR [2] 0.1930 03951  0.0351  0.0709 03863 0.0814 0.0872  0.0361  0.1015
CCM [3] 02532 0.0257 02353  0.1670  0.1979  0.0152  0.0293  0.0534  0.0383
Advent [3] 02306 02273 0.1141  0.0597  0.1452  0.0332  0.0300 0.0462  0.0348
Intrada [S] 00304 01850 0.1008 00590 0.1267 00343 00332 00087  0.0375
ProDA [12] 3.8214 0.2651 0.2904 0.2078 0.2002 0.0716 0.0308 0.0515 0.3029
CLAN [4] 1.6087 03407 02871  0.1721  0.1387  0.1637  0.1400  0.2108  0.2316
UDA (paired) CAG [13] 35663 2.1186 54703 15237  0.6600  0.1649  0.2204  0.1837  0.2730
FDA [11] 1.0055 05012 1.1540 13336  0.6200 03637 03404 04518  0.4293
PLCA[1] 0.5098 0.4753 0.3769 0.6816 0.3012 0.1489 0.1734 0.0917 0.0724
Novel View Sva Appflow [17] 03223 04770 07736 03592  0.1790  0.1375  0.1401  0.0611  0.1882
yn. Synsin [10] 0.3535 0.3703 0.1750 0.2450 0.2203 0.2515 0.1604 0.1323 0.0833
Info. Trans. ADeLA 0.3857 0.2057 0.3065 0.3507 0.1385 0.0949 0.3299 0.0498 0.1888

Table 1. Standard deviations of different methods.
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Figure 3. More qualitative results of our method compared with

others on all target domains.

source image target image source label raw prediction ~ ADeLA

Figure 4. Qualitative results of our model (5th) on real-world im-
ages. The source domain pseudo labels (3rd) are acquired from an
off-the-shelf semantic segmentation model, raw predictions (4th)
are obtained by directly applying the off-the-shelf model to target
domain images.

4.2. Effectiveness of constraining early predictions
in training ¢

We train network ¢ with loss function shown in Eq. 7.
The loss forces early outputs le to be similar to the final
perturbed target view image Zg. We study the role of early
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Figure 5. More samples from our dataset. For each scene, the 1st row shows color images, and the 2nd row shows the corresponding

semantic segmentation.

supervision with 0° as the source domain and 30° as the
target domain. As seen in Tab. 2, the constraint on the early
outputs significantly improves the convergence rate of the
training process and the accuracy of the trained model.

w/o early supervision ~ w/ early supervision

mloU 325 427
converence rate 35 epochs 20 epochs

Table 2. Effectiveness of early supervision with source domain 0°
and target domain 30°.



4.3. Generalization on real-world data

To test how the trained network generalizes to real-world
data, we collect some sample videos using a custom-made
gantry shown in Fig 6.

target domain (45°

Figure 6. Data collection gantry. The platform has three different
cameras pitching 0°,45°, 90° respectively.

Due to the lack of semantic annotations in the source
domain (forward view) for our collected real data, we use an
off-the-shelf semantic segmentation network (trained on the
ADE-20k [15, 16]" dataset) to provide the source domain
labels. We then apply the view transformation network on
these source domain labels to get the hallucinated labels on
the target view.

The qualitative results are presented in Fig. 4. As ob-
served in the figure, our model can correctly transfer la-
bels of the floor and wall (1st and 2nd row), trashcan and
handrail (3rd and 4th row), and chairs and tables (5th and
6th row) to their respective target views, whereas directly
applying the pretrained model on the target domain images
generates much noisy and even incorrect predictions. This
demonstrates the ability of our model to generalize to the
real world.
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