
Supplementary Material for “Multi-Robot Active Mapping
via Neural Bipartite Graph Matching”

This document provides the additional supplemental ma-
terial that cannot be included in the main paper due to its
page limit:

• Implementation details.

• Training with a single scene.

• Generalization to more unseen robots.

A. Implementation details
We train the global planner with 12 parallel threads.

We use 12 mini-batches and do 4 epochs in each PPO up-
date. We adopt the Adam optimizer with a learning rate of
0.0005/0.000025 (actor/critic), a discount factor of 0.99, an
entropy coefficient of 0.0001 and value loss coefficient of
3.0. The network structure for the multiplex graph neural
network is detailed below:

• finit: a 5-layer MLP (3-32-64-128-256-32).
• fquery/fkey/fvalue: a linear projection (32-32).
• fnode: a 2-layer MLP (64-64-32).
• fedge: a 2-layer MLP (96-32-1).
Each fully connected layer in the above networks is fol-

lowed by a Batch Normalization layer and a ReLU layer.
In the iGibson environment, each robot has a physical

body and can be visually observed by other robots and hence
becomes obstacles (occupied) in the occupancy map. There-
fore, unlike the previous works [2, 1, 3] that do not update
the obstacle once it is constructed, in our framework, we
update the explored region (free and explored region) when
it has been scanned more than once to alleviate the issues
raised by the multi-robot scenario.

B. Training with a single scene
In the main paper, we demonstrate that our algorithm is

trained only on 9 scenes in the Gibson dataset, and is able to
generalize well to various indoor scenes even in the unseen
Matterport3D dataset. This mainly benefits from the pro-
posed multiplex graph neural network, which is the solely
learnable module in our algorithm, and only relies on the
simple robot, frontier, and their geodesic distance informa-
tion extracted from the occupancy map for goal position

NeuralCoMapping (Ours) Cov. (%) Time (#steps)

single training scene 97.1 691.3
nine training scenes 96.3 661.7

Table 1. Experiments of training with a single scene or nine scenes
for our algorithm. The results are reported on the Matterport3D
dataset.

estimation. Such a design makes our algorithm relatively
robust to the geometry, appearance, and layout variations of
the indoor scene distributions.

To further explore the potential of training with fewer
scenes for our algorithm, we experiment with an extreme
case, where our algorithm is trained with only a single scene.
The results are shown in Table 1. Surprisingly, we observe
that in this extreme case, our algorithm still performs com-
parably with the original one trained with nine scenes. It
demonstrates the strong learning ability and robustness of
our algorithm.

C. Generalization to more unseen robots

We further evaluate the generalization ability of our al-
gorithm on more unseen robots. We train our algorithm
with 3 robots, same as the multi-robot scenario in the main
paper, and evaluate it with 2, 4, 5, 7 and 9 robots. We also
test its upper bound performance by training and evaluating
on the same number (2, 4, 5, 7, 9) of robots. We observe
that when we run more robots for scene reconstruction, the
performance of time efficiency tends to saturate, hence the
advantage of using more robots cannot be fully exposed. To
tackle this issue, we evaluate the generalization ability on
the large scenes (≥ 50m2) in the Matterport3D dataset. The
results are shown in Table 2. Our algorithm is able to achieve
very similar performance compared to its upper bound even
when it generalizes to the 9-robot scenario. It validates the
exceptional generalization ability of our algorithm again.

In this work, we focus on active mapping of indoor scenes
from the Gibson and Matterport3D datasets, where usually
less than 10 robots are sufficient. We further evaluate 100
robots in a scene of 633.6m2, and observe consistently better
results of our algorithm (450 steps) than the best competitor
CoScan (525 steps).



Train with 3 robots Upper bound

Test number of robots Cov. (%) Time (#steps) Cov. (%) Time (#steps)

2 robots 97.1 1293.8 96.6 1276.5
4 robots 98.4 798.7 98.4 776.3
5 robots 98.1 728.7 98.2 693.5
7 robots 96.9 694.0 98.4 662.3
9 robots 98.6 589.7 98.5 580.8

Table 2. Generalization to more robots on the Matterport3D dataset. Our algorithm is trained with 3 robots, and evaluated with 2, 4, 5, 7 and
9 robots separately. The upper bound performance is computed by training and evaluated on the same number of robots.
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