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Abstract

Pre-trained text-to-image diffusion models are increas-
ingly applied to real-world image super-resolution (Real-
ISR) task. Given the iterative refinement nature of diffusion
models, most existing approaches are computationally ex-
pensive. While methods such as SinSR and OSEDIff have
emerged to condense inference steps via distillation, their
performance in image restoration or details recovery is not
satisfied. To address this, we propose TSD-SR, a novel dis-
tillation framework specifically designed for real-world im-
age super-resolution, aiming to construct an efficient and
effective one-step model. We first introduce the Target Score
Distillation, which leverages the priors of diffusion mod-
els and real image references to achieve more realistic im-
age restoration. Secondly, we propose a Distribution-Aware
Sampling Module to make detail-oriented gradients more
readily accessible, addressing the challenge of recovering
fine details. Extensive experiments demonstrate that our
TSD-SR has superior restoration results (most of the met-
rics perform the best) and the fastest inference speed (e.g.
40 times faster than SeeSR) compared to the past Real-ISR
approaches based on pre-trained diffusion priors.

1. Introduction

Image super-resolution (ISR) [8, 9, 23, 26] aims to trans-
form low-quality (LQ) images, which have experienced
noise or blur, into clear high-quality (HQ) images. Differing
from traditional ISR [6, 66], which assumes a known degra-
dation process, real-world image super-resolution (Real-
ISR) [46, 62] is designed to enhance real-world images that
have suffered from complex and unknown degradations,
thereby offering greater practical utility.

Generative models, particularly Generative Adversarial
Networks (GANSs) [11, 33, 37] and Diffusion Models (DMs)
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Figure 1. Performance and efficiency comparison among Real-
ISR methods. TSD-SR stands out for achieving high-quality
restoration with the fastest speed among diffusion-based models.
In contrast, existing models prioritize either speed or restoration
performance. The performance of each method is benchmarked
on an A100 GPU with the DRealSR dataset.

[17, 39, 41], have shown remarkable power in handling
Real-ISR task. GAN-based methods leverage adversarial
training, toggling between the generator and discriminator
to produce realistic images. While GANs are capable of
one-step inference, they are commonly hampered by issues
like mode collapse and training instability [2]. Recently,
Diffusion Models (DMs) have shown impressive perfor-
mance in the realm of image generation [21, 47]. Their
robust priors empower them to produce more realistic im-
ages with richer details than GAN-based methods [39, 41].
Some researchers [29, 53, 56, 60] have successfully lever-
aged pre-trained DMs for Real-ISR task. However, due to
the iterative denoising nature of diffusion models [17], the
Real-ISR process is computationally expensive.

To achieve an efficient and one-step network akin to
GAN:S, several pioneering methods that condense the iter-
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ations of diffusion models through distillation [12, 15, 18,
57] have been proposed [48, 52, 54]. Among these works,
OSEDiff [52] introduced the Variational Score Distillation
(VSD) loss [50] to Real-ISR task, achieving state-of-the-art
(SOTA) one-step performance by leveraging prior knowl-
edge from pre-trained models. Despite these advancements,
our investigation has revealed two critical limitations asso-
ciated with VSD in Real-ISR applications. (1) Unreliable
gradient direction. VSD relies on a Teacher Model to pro-
vide a “true gradient direction.” However, this guidance
proves unreliable in scenarios where initial ISR outputs are
suboptimal. (2) Insufficient detail recovery. The VSD loss
exhibits notable variation across different timesteps, and the
uniform sampling strategy for ¢ poses challenges in aligning
the score function with detailed texture recovery require-
ments. These findings highlight the need for enhanced ap-
proaches to address these issues effectively.

In this paper, we propose a novel method called TSD-
SR to distill a multi-step Text-to-Image (T2I) DMs [10,
38, 39] into an effective one-step diffusion model tailored
for the Real-ISR task. Specifically, TSD-SR consists of
two components: Target Score Distillation (TSD) and
Distribution-Aware Sampling Module (DASM). TSD in-
corporates our new proposed Target Score Matching (TSM)
loss to compensate for the limitation of VSD loss. This sig-
nificant score loss leverages HQ data to provide a reliable
optimization trajectory for the distillation process. It effec-
tively reduces the visual artifacts caused by deviant predic-
tions from the Teacher Model. DASM is crafted to bolster
detail recovery by strategically sampling low-noise samples
that are distribution-based during training. This approach
effectively allocates more optimization to early timesteps in
a single iteration, enhancing the recovery of details.

Experiments on popular benchmarks demonstrate that
TSD-SR achieves superior restoration performance (most of
the metrics perform the best) and high efficiency (the fastest
inference speed, 40 times faster than SeeSR) compared to
the state-of-the-art Real-ISR methods based on pre-trained
DMs, while requiring only a single inference step.

Our main contribution can be summarized as threefold:

* We propose a novel method called TSD-SR to achieve
one-step DMs distillation for the Real-ISR task.

* We introduce Target Score Distillation (TSD) to provide
a reliable gradient to enhance the realism of the Real-ISR
model’s outputs.

e We design a Distribution-Aware Sampling Module
(DASM) specifically tailored to enhance the capability of
detail restoration.

2. Related Work

GAN-based Real-ISR. Since SRGAN [26] first applied
GAN to ISR, it has effectively enhanced visual quality
by combining adversarial loss with perceptual loss [7,

65]. Subsequently, ESRGAN [45] introduced Residual-in-
Residual Dense Block and a relativistic average discrimina-
tor, further improving detail restoration. Methods like BSR-
GAN [62] and Real-ESRGAN [46] simulate complex real-
world degradation processes, achieving ISR under unknown
degradation conditions, which enhances the model’s gener-
alization ability. Although GAN-based methods are capable
of adding more realistic details to images, they suffer from
training instability and mode collapse [2].

Multi-step Diffusion-based Real-ISR. Some researches
[29, 44, 53, 56, 60] in recent years have utilized the
powerful image priors in pre-trained T2I diffusion models
[35, 39, 64] for Real-SR tasks and achieved promising re-
sults. For example, StableSR [44] balances fidelity and per-
ceptual quality by fine-tuning the time-aware encoder and
employing controllable feature wrapping. DiffBiR [29] first
processes the LR image through a reconstruction network
and then uses the Stable Diffusion (SD) model [39] to sup-
plement the details. SeeSR [53] attempts to better stimu-
late the generative power of the SD model by extracting the
semantic information in the image as a conditional guide.
PASD [56] introduces a pixel-aware cross attention module
to enable the diffusion model to perceive the local struc-
ture of the image at the pixel level, while using a degrada-
tion removal module to extract degradation insensitive fea-
tures to guide the diffusion process along with high-level
information from the image. SUPIR [60] achieves a gener-
ative and fidelity capability using negative cues [16] as well
as restoration-guided sampling, while using a larger pre-
training model with a larger dataset to enhance the model
capability. However, all of these methods are limited by the
multi-step denoising of the diffusion model, which requires
20-50 iterations in inference, resulting in an inference time
that lags far behind that of GAN-based methods.

One-step Diffusion-based Real-ISR. Recently, there has
been a surge of interest within the academic community
in one-step distillation techniques [31, 34, 40, 58, 59] for
diffusion-based Real-ISR task. SinSR [48] leverages con-
sistency preserving distillation to condense the inference
steps of ResShift [61] into a single step, yet the general-
ization of ResShift and SinSR is constrained due to the ab-
sence of large-scale data training. AddSR [54] introduces
the adversarial diffusion distillation (ADD) [40] to Real-
ISR tasks, resulting in a comparatively effective four-step
model. However, this method has a propensity to produce
excessive and unnatural image details. OSEDiff [52] di-
rectly uses LQ images as the beginning of the diffusion pro-
cess, and employs VSD loss [50] as a regularization tech-
nique to condense a multi-step pre-trained T2I model into a
one-step Real-ISR model. However, due to the incorpora-
tion of alternating training strategies, OSEDiff may initially
tend towards unreliable optimization directions, which may
lead to the visual artifacts.
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Figure 2. Pipeline overview. We train one-step Student Model G¢ to map the low-quality image =, into a more realistic one. The noisy
latent 2 and z: sampled by DASM (Details can be found in Fig. 6.) will be fed into both the pre-trained Teacher and LoRA Model to
produce the Variational Score loss. Subsequently, two Models’ predictions on z; yield Target Score loss. Their weighted forms, namely
TSD (red flow), in conjunction with pixel-space reconstruction loss (green flow), are leveraged to update the Student Model. After

updating the Student Model, we employ the diffusion loss (blue flow) to alternately update the LoRA Model.

3. Methodology
3.1. Preliminaries

Problem Formulation. ISR problem aims to reconstruct
a HQ image = from a LQ input z;, by training a param-
eterized ISR model Gy on a dataset D = {(x, xH)ﬁ\Ll},
where NV represents the number of image pairs. It is mathe-
matically formulated as minimizing the following objective:

0" = arg Hbin]E(wL,a:H)~'D[£Rec(G9 (.13[,), 'TH)

+ALReg(qo(2m),p(zH))]

Here, £ .. denotes the reconstruction loss, commonly mea-
sured using distance metrics like Lo or LPIPS [65]. The
regularization term Lp., enhances the realism and gener-
alization of the ISR model’s outputs. This objective can
be understood as aligning the ISR output ;s distribution,
qo(Z 1), with the true distribution p(x 57 ) by minimizing the
KL-divergence [25]:

min D, (¢0(&) [p(z 1)) )

While several studies [45, 46, 62] have employed adver-
sarial loss to optimize this objective, they often encounter
issues like mode collapse and training instability. Recent
work [52] achieved the state-of-the-art results using Varia-
tional Score Distillation (VSD) as the regularization loss to
minimizing this objective, which inspires our research.

Variational Score Distillation. Variational Score Distil-
lation (VSD) [50] was initially introduced for text-to-3D
generation by distilling a pre-trained text-to-image diffusion
model to optimize a single 3D representation [36].

In the VSD framework, a pre-trained diffusion model,
represented as €, and its trainable (LoRA [19]) replica €,
are used to regularize the generator network Gy. As out-
lined in ProlificDreamer [50], the gradient with respect to
the generator parameters 6 is formulated as follows:

VQCVSD (2, Cy)

0z 3)
00

where 2; = a2 + o€ is the noisy input, 2 is the latent out-
putted by the generator network Gy, € is a gaussian noise,
and oy, 0, are the noise-data scaling constants. ¢, is a text

embedding corresponding to a caption that describes the in-
put image, and w(t) is a time-varying weighting function.

=Eie |w(t) (eg(Ze5t,cy) — €5(2e3t,¢y))

3.2. Overview of TSD-SR

As depicted in Fig. 2, our goal is to distill a given pre-
trained T2I DMs into a fast one-step Student Model Gy
with Teacher Model €, and trainable LoRA Model €. We
denote the latent outputs of the distilled model as Zg, and
HQ latent representations as zg. Both Zg and z( will pass
through our Distribution-Aware Sampling Module (DASM)
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Figure 3. A visual comparison of the gradient direction. We set
the timestep ¢ to 100 and calculated the cosine similarity between
the predicted directions from the Teacher Model and the true di-
rection (towards the HQ data). The prediction direction for z
closely matches the true direction, but not for 2, suggesting that
suboptimal samples may lead to directional deviations.

to obtain distribution-based samples 2; and z; (Sec. 3.4).
We train Gy by minimizing the two losses: a reconstruction
loss in pixel space to compare the model outputs against the
ground truth, and a regularization loss (from Target Score
Distillation) to enhances the realism (Sec. 3.3). After up-
dating the Student Model, we update the LoRA Model with
diffusion loss. Finally, in Sec. 3.5, we present an overview
of all the losses encountered during the training phase.

3.3. Target Score Distillation

Similar to [52], we introduce VSD loss into our work as
a regularization loss to enhance the realism and general-
ization of the Gy outputs. Upon reviewing VSD Eq. (3),
€4(2¢;t, ¢,) represents the gradient direction of the opti-
mization on Gy noisy outputs 2, whereas €,,(2¢; t, ¢,) cor-
responds to the gradient direction on noisy HQ latent repre-
sentations z;. The overarching goal of model optimization
is to harmonize the predictions from £ with those from z;.
Nonetheless, this strategy encounters hurdles, especially in
the early training phase: the quality of synthetic latents 2;
is not high enough for Teacher Model to give a precise pre-
diction. As illustrated in Fig. 3, the Teacher Model finds it
challenging to accurately predict the optimization direction
for low-quality synthetic latents, with the cosine similarity
to the ideal optimization direction only 0.2 (0.88 on HQ la-
tents). This problem can lead to severe visual artifacts, as
evident in Fig. 4(a).

A straightforward remedial measure is to employ a mean
squared error (MSE) loss to align the synthetic latents with
the ideal inputs of the Teacher Model, which are derived
from HQ latents. However, as shown in Fig. 4(b), this
approach has been observed to lead to over-smoothed re-
sults [13]. Our strategy, instead, is to align the predic-
tions made by the Teacher Model on both synthetic and HQ

(c) Ours
Figure 4. The visualization of different strategies. (a) The naive
method introduces fake textures and fails to recover fine details.
(b) MSE leads to over-smoothed generation result, lacking high-
frequency information. (c) Our method offers the superior visual
effects and fine textures.

7 (a) Naiv (b) MSE

latents, thereby encouraging greater consistency between
them. The core idea is that for samples drawn from the same
distribution, the real scores predicted by the Teacher Model
should be close to each other. We refer to this approach as
Target Score Matching (TSM):

VoLrsm(z,z,cy)

0z] 4
00

where the expectation of the gradient is computed across
all diffusion timesteps ¢t € {1,---,7} and ¢ ~ N(0,1).
Equation (4) encapsulates the optimization loss for our Tar-
get Score Matching. Upon examining it in conjunction with
the Eq. (3), we notice that VSD utilizes the prediction resid-
ual between a Teacher and a LoRA Model to drive gradient
backpropagation. Conversely, our TSM employs the syn-
thetic and the HQ data to produce the gradients. By blend-
ing these two strategies with hyperparameter weighting A
and 1 — A, we can construct our ultimate optimization loss,
effectively unifying the strengths of both approaches to op-
timize the training process Eq. (5).

=Ky |w(t)(ep(Zest, cy) — €p(2e3t, ¢y))

VoLrsp(2,2,¢,) = By [w(t)[e,/,(it; te,)—

0z )
00

where w(t) is time-aware weighting function tailored for
Real-ISR. Other symbols are in accordance with those pre-
viously mentioned. By introducing the prediction of pre-
trained diffusion model on HQ latents, we have circum-
vented the issue of the model falling into the visual artifacts
or over-smoothed problem, as illustrated in Fig. 4(c).

ep(zeit cy) + Mey(ze5t, ¢y) — €9(2e3t, ¢y))]

3.4. Distribution-Aware Sampling Module

In the VSD-based framework, we need to match the score
functions predicted by the Teacher Model with those by
the LoRA Model at different timesteps ¢ ~ {0,1,--- ,T}.
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However, for the Real-ISR problem, this matching ability at
different ¢ is unbalanced, as illustrated in Fig. 5(a) . This
phenomenon could be attributed to our leveraging of the
low-frequency (LF) priors from LQ data ,but losing guid-
ance from high-frequency (HF) details. The noisy samples
Zy possesses low-frequency priors (from LQ data). These
priors are easily learned by the LoRA Model, leading to
more similar predictions (Fig. 5(b)) during LF restoration
(Stage 1). However, In the Stage 2, the lack of HF details
in Z; causes the LoORA Model to poorly perceive details, re-
sulting in divergent predictions (Fig. 5(c)). Our goal is to
reduce this divergence.

Existing method, for each iteration, only matches the
score function at a single timestep sample Z;, with uniform
sampling strategy of time ¢. This leads to slow convergence
or even difficulty in optimization during Stage 2, as the
gradients of important timesteps are averaged out. To this
end, we propose our Distribution-Aware Sampling Module
(DASM). This module accumulates optimization gradients
for earlier timestep samples in a single iteration, enabling
the backpropagation of more gradients focused on detail op-
timization. As shown in Fig. 6, we first introduce noise into
the synthetic latent representation 2; = (1 — 0¢)20 + o€,
where o is a weight factor and € is a gaussian noise. Sub-
sequently, we employ a LoORA Model to perform denoising,
yielding the previous time noisy samples by Eq. (6):

211 =2¢+ (01—1 — 01) - €4(Z45t, ¢y), (6)

where 0,1 and o; are from the flow matching scheduler,
and here LoRA Model has fit 2¢’s distribution. Similarly,
z¢—1 can be obtained by denoising on the Teacher Model.
Ultimately, in a single iteration, the gradients from noise
samples along its trajectory can be accumulated to update
the Student Model. Since the obtained samples follow the
diffusion sampling trajectory and are directed towards early

(a) Origin VSD-based Noise Inputs Ve Y

(b) DASM Noise Inputs

. VSD and TSM
ZO_)«T Ill 2i1 III Zt‘Z Zt‘s

Diffusion ‘ Diffusion

A 7/
Figure 6. Illustration of DASM. Top: The naive method that add
noise to samples. Bottom: Our DASM leverages the priors of dif-
fusion models to sample noise that more closely aligns with the
true sampling trajectory. The noisy samples can all serve as inputs
to the subsequent network to generate gradient backpropagation.

timestep, we effectively optimize the divergence in Stage 2.

3.5. Training Objective

We summarize all the losses we used in our framework.
Student Model Gy. We train our Student Model with the
reconstruction loss £ ge. and the regularization loss Lreg.
For the reconstruction loss, we use LPIPS loss:

Lgec (Go(zr), zn) = Lrprps (Go(zr), ).  (7)
For the regularization loss, we use our TSD loss Eq. (5).

Therefore, the overall training objective for the Student
Model Gy is:

EStu = ERec + 'YEReg7 (8)
where + is a weighting scalar.
LoRA Model €4. As stipulated by VSD, the fine-tuned
replica €4 must be trainable, with its training objective be-
ing:

Lifs(2.¢,) = Evelles(2eit,e,) = €I, )

where €’ serves as the training target for the denoising net-
work, representing Gaussian noise in the context of DDPM,
and a gradient towards HQ for flow matching.

4. Experiments
4.1. Experimental Settings

Training Datasets. We adopt DIV2K [1], Flickr2K [42],
LSDIR [27] and first 10K face images from FFHQ [20] for
training. We use the same degradation pipeline as Real-
ESRGAN [46] to synthesize LR-HR pairs.

Test Datasets. We evaluated our model on synthetic
DIV2K-Val [ 1] dataset and two real-world datasets, RealSR
[4] and DRealSR [51]. The real-world datasets comprised
128x128 LQ and 512x512 HQ image pairs.

Evaluation Metrics. For evaluating our method, we apply
both full-reference and no-reference metrics. Full-reference
metrics include PSNR and SSIM [49] (calculated on the
Y channel in YCbCr space) for fidelity, LPIPS [65] and
DISTS [7] for perceptual quality, and FID [14] for distribu-
tion comparison. No-reference metrics include NIQE [63],
MANIQA[55], MUSIQ [22] and CLIPIQA [43].
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Table 1. Quantitative comparison with the state-of-the-art one-step methods across both synthetic and real-world benchmarks. The number

of diffusion inference steps is indicated by ‘s’. The best results of each metric are highlighted in red.

Datasets | Method | PSNRT SSIMt LPIPS| DISTS| FID| NIQE|, MUSIQ? MANIQAt CLIPIQA 1
OSEDiff-1s | 27.92  0.7836 02968 02162 13551 6.4471 64.69 0.5898 0.6958
DRealSR | AdISR-Is | 2777 07722 03196 02242 15018 69321 60.85 0.5490 0.6188
SinSR-1s | 2838 07497 03669 02484 17272 6.9606 55.03 0.4904 0.6412
Ours-1s 2777 07559  0.2967 02136 13498 5.9131 66.62 0.5874 0.7344
OSEDiff-1s | 25.15 07341 02920 02128 12348 5.6471 69.10 0.6326 0.6687
RealSR | AdISR-Is | 2479 07077 03091 02191 13205 55440 66.18 0.6098 0.5722
SinSR-1s | 2627 07351 03217 02341 13759 6.2964 60.76 0.5418 0.6163
Ours-1s 2481 07172 02743 02104 11445 5.1298 71.19 0.6347 0.7160
OSEDIff-1s | 23.72  0.6109 02942  0.1975 2634  4.7089 67.96 0.6131 0.6681
DIVIK.Val | AdOSR-Is | 2326 05902 03623 02123 2968 47610 63.39 0.5657 0.5734
SinSR-1s | 24.41 06018 03262 02068 3555  5.9981 62.95 0.5430 0.6501
Ours-1s 23.02 05808  0.2673  0.1821  29.16  4.3244 71.69 0.6192 0.7416

Compared Methods. We categorize the test models into
two groups: single-step and multi-step inference. The
single-step inference diffusion models include SinSR [48],
AddSR [54], and OSEDiff [52]. The multi-step inference
diffusion models comprise StableSR [44], ResShift [61],
PASD [56], DiffBIR [29], SeeSR [53], SUPIR [60], and
AddSR [54]. Specifically, for AddSR, we have conducted
comparisons between its single-step and four-step models.
GAN-based Real-ISR methods [5, 28, 46, 62] are detailed
in the supplementary material.

Implementation Details. All models mentioned are initial-
ized from the Teacher Model (SD3 [10] in our work). We
only train vae encoder and denoising network in the Student
Model, frozen the vae decoder in order to preserve vae’s
prior [24]. We utilize the default prompt for the Student
Model, and prompts extracted from HQ for the Teacher and
LoRA models when training. We use the AdamW optimizer
[30] with a learning rate of Se-6 for the Student Model and
le-6 for the LoORA Model, and set rank of LoRA to 64 for
both two models. The training process took roughly 120h,
utilizing 8 NVIDIA V100 GPUs with a batch size of 16.

4.2. Comparison with Existing Methods

Quantitative Comparisons. Tab. | show the quantitative
comparison of our method with single-step diffusion mod-
els on three datasets. Ours achieves the best results on most
evaluation metrics. SinSR and AddSR, as distilled versions
of previous multi-step super-resolution methods, reduce in-
ference steps but experience a corresponding decrease in
performance metrics. OSEDIff introduces the VSD loss
from 3D generation tasks into Real-ISR without fully ad-
dressing the substantial differences between the two do-
mains. Therefore, the no-reference metrics for image qual-
ity are not very satisfied. In contrast, our proposed TSD-SR,
tailored for Real-ISR, outperform other single-step models
in terms of the vast majority of key metrics.

Tab. 2 show the quantitative comparison with multi-
step models. We can draw the following conclusions: (1)
TSD-SR demonstrates significant advantages over compet-
ing methods in terms of LPIPS, DISTS, and NIQE met-
rics. Additionally, it achieves performance that surpasses
most multi-step models on FID, MUSIQ, and CLIPIQA. (2)
DiffBIR, SeeSR, PASD, and AddSR exhibit better perfor-
mance on the MANIQA metric, which may be attributed to
the fact that multi-step models have more denoising itera-
tions to produce rich details. (3) ResShift stands out with
the highest PSNR and SSIM scores, while StableSR also
shows notable performance regarding DISTS and FID met-
rics. However, both two models underperform in terms of
no-reference metrics.

Finally, we explain the lower PSNR and SSIM metrics
in our experiments. Several works [54, 60] have found that
these reconstruction metrics are not well-suited for evaluat-
ing Real-ISR tasks. When a model recovers better details, it
leads to lower reconstruction metrics, indicating a trade-off
[3, 32, 67]. Refer to the supplementary material for detailed
visual comparisons and analysis.

Qualitative Comparisons. Fig. 7 present visual compar-
isons of different Real-ISR methods. As shown in multi-
step methods’ results, SeeSR uses degradation-aware se-
mantic cues to leverage image generation priors, but it
sometimes produces over-smooth textures. SUPIR demon-
strates a notably robust generative capacity, however, the
overproduction of extraneous details will lead to results that
lack naturalism in image restoration (e.g. Adding excessive
wrinkles at the corners of a young girl’s eyes). Under more
realistic degradation conditions, PASD finds it challenging
to restore the corresponding content, revealing a deficiency
in the model’s robustness capabilities. Among single-step
methods, SinSR introduces artifacts, possibly because its
distilled pre-trained model is trained from scratch, lack-
ing sufficient real-world priors, which results in unsatisfac-
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Table 2. Quantitative comparison with state-of-the-art multi-step methods across both synthetic and real-world benchmarks. The number
of diffusion inference steps is indicated by ‘s’. The best and second best results of each metric are highlighted in red and blue, respectively.

Datasets | Method | PSNRT SSIM1 LPIPS| DISTS| FID| NIQE, MUSIQt MANIQA+ CLIPIQA 1
StableSR-200s | 28.04  0.7454 03279  0.2272  144.15  6.5999 58.53 0.5603 0.6250
DiffBIR-50s | 2593  0.6525 04518 02761 177.04 6.2324 65.66 0.6296 0.6860
SeeSR-50s 2804 07712 03141 02297 14695  6.4632 64.74 0.6022 0.6893
DRealsR | SUPIR-50s 2509  0.6460 04243 02795 16948  7.3918 58.79 0.5471 0.6749
PASD-20s 2779 07495 03579 02524 171.03  6.7661 63.23 0.5919 0.6242
ResShift-15s | 28.69  0.7874 03525 02541 176.77 7.8762 52.40 0.4756 0.5413
AddSR-4s 2672 07124 03982 02711  164.12  7.6689 66.33 0.6257 0.7226
Ours-1s 2777 07559 02967 02136 13498 59131 66.62 0.5874 0.7344
StableSR-200s | 24.62  0.7041 03070  0.2156  128.54 5.7817 65.48 0.6223 0.6198
DiffBIR-50s | 2424  0.6650 03469 02300 134.56 5.4932 68.35 0.6544 0.6961
SeeSR-50s 2521 07216 03003 02218 12510 5.3978 69.69 0.6443 0.6671
RealSR SUPIR-50s 23.65 06620 03541 02488 130.38  6.1099 62.09 0.5780 0.6707
PASD-20s 25.68 07273 03144 02304 134.18  5.7616 68.33 0.6323 0.5783
ResShift-15s | 26.39  0.7567 03158 02432  149.59  6.8746 60.22 0.5419 0.5496
AddSR-4s 2333 0.6400 03925 02626 15422  5.8959 71.49 0.6826 0.7225
Ours-1s 2481 07172 02743 02104 11445 5.1298 71.19 0.6347 0.7160
StableSR-200s | 2327 05722 03111 02046 2495  4.7737 65.78 0.6164 0.6753
DiffBIR-50s | 23.13 05717 03469 02108 3393  4.6056 68.54 0.6360 0.7125
SeeSR-50s 2373 0.6057 03198  0.1953 2581  4.8322 68.49 0.6198 0.6899
DIV2K.Val | SUPIR-50s 2213 05279 03919 02312 3140  5.6767 63.86 0.5903 0.7146
PASD-20s 2400 0.6041 03779 02305 39.12  4.8587 67.36 0.6121 0.6327
ResShift-15s | 24.71  0.6234 03473 02253 4201 63615 60.63 0.5283 0.5962
AddSR-4s 22.16 05280 04053 02360 3541 52584 70.99 0.6596 0.7593
Ours-1s 23.02 05808  0.2673  0.1821  29.16  4.3244 71.69 0.6192 0.7416

Table 3. Comparison of computational complexity across different DMs-based methods. The performance of each method is measured on
an A100 GPU, using input images sized at 512 x 512 pixels. We have disregarded the loading time for model weights and data.

‘StableSR DiffBIR SeeSR SUPIR PASD ResShift AddSR AddSR SinSR OSEDiff Ours

Inference Step 200 50 50 50 20 15 4 1 1 1 1
Inference Time | 12.4151 7.9637 5.8167 16.8704 4.8441  0.7546 1.0199  0.5043 0.1424  0.1650  0.1362

tory image restoration capabilities. AddSR produces over-
smoothed results when using its 1-step model. OSEDiff of-
fers improved restoration effects compared to SinSR and
AddSR, yet it may fall short in terms of authenticity and
naturalness when it comes to detail recovery. In contrast,
our method effectively generates rich textures and realistic
details with enhanced sharpness and contrast. Additional
visual comparisons and results are provided in the supple-
mentary material.

Complexity Comparisons We assess the complexity of the
state-of-the-art DM-based Real-ISR models as detailed in
Tab. 3, focusing on inference time. The performance of
each method is benchmarked on an A100 GPU with in-
put images sized at 512 x 512 pixels. We have disregarded
the loading time for model weights and data, and the main
computation time includes: (1) text extraction time when
a text extractor is used; (2) text encoder computation time
if needed; (3) VAE encoding and decoding time; (4) de-
noising network execution time. It is evident that TSD-SR
has a substantial advantage in inference time compared with

multi-step models. Specifically, TSD-SR is more than 120
times faster than SUPIR, 90 times faster than StableSR,
about 50 times faster than DiffBIR, more than 40 times
faster than SeeSR, more than 35 times faster than PASD,
and 4 times faster than ResShift. When compared with ex-
isting one-step models, our model boasts the fastest infer-
ence times. This is because we directly denoise from LQ
data and use a fixed prompt.

4.3. User Study

We conduct a user study comparing our method with three
other diffusion-based one-step super-resolution methods.
To make the evaluation more comprehensive, we selected
images from five categories—human faces, buildings, ani-
mals, vegetation and characters. A total of 50 participants
were engaged in the voting process. We guided participants
to evaluate the best restoration results based on the similar-
ity to HQ image, structural similarity to the LQ image, and
realism of textures and details. The results shown in the
Fig. 8 indicate that our method receives a 69.2% approval
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Figure 8. The results of our user study. Left: Category-based
user preference radar chart. Our model has won the most user
favor across all categories. Right: User preference pie chart. Our
approach has garnered a 69.2% user satisfaction rating.

Table 4. Ablation study of Target Score Matching loss and
Distribution-Aware Sampling Module.

Datasets | Method | DISTS| MUSIQ1 MANIQA 1 CLIPIQA 1

w/o TSM 0.2327 63.90 0.5749 0.6958

DRealSR | w/o DASM | 0.2311 63.56 0.5812 0.7123
Full 0.2136 66.62 0.5874 0.7344

w/o TSM 0.2397 68.56 0.6338 0.6987

RealSR | w/o DASM | 0.2273 69.05 0.6273 0.7031
Full 0.2104 71.19 0.6347 0.7160

rate from users. We scored 57.60% in Animals, 70.00% in
Buildings, 68.80% in Human Faces, 65.20% in Vegetation,
and 84.40% in Characters, surpassing other models.

4.4. Ablation Study

To validate the effectiveness of TSM loss and DASM, we
conduct ablation studies by removing them separately in

SeeSR-SOs

~ AddSR-1s

SeeSR-50s

OSEDiff-1s

SUPIR-50s

i

OSEDiff-1s
Figure 7. Visual comparisons of different Real-ISR methods. Please zoom in for a better view.

our experiments. We select DISTS, MUSIQ, MANIQA
and CLIPIQA metrics for comparison, as these are critical
for image quality assessment. The results are presented in
Tab. 4. We draw the following conclusions: (1) The ab-
sence of TSM loss and DASM affects the metrics DISTS,
MUSIQ, MANIQA and CLIPIQA. (2) The lack of TSM
leads to a significant decrease in DISTS, MUSIQ and CLIP-
IQA metrics, possibly due to the unreliable directions in
VSD causing unrealistic generations. (3) The absence of
DASM results in a decline in MUSIQ and CLIPIQA, possi-
bly due to the suboptimal optimization of details.

5. Conclusion and Limitation

We propose TSD-SR, an effective and one-step model based
on diffusion prior for Real-ISR. TSD-SR utilizes the TSD
to enhance the realism of images generated by the distilla-
tion model. And it leverages DASM to sample distribution-
based samples and accumulate their gradients to enhance
the recovery of details. Our experiments have demonstrated
that TSD-SR outperforms existing one-step Real-ISR mod-
els in both performance and inference speed.

limitations. Although our model boasts excellent inference
speed and restoration performance, it still has a large num-
ber of model parameters compared to the past GAN/non-
diffusion approaches. In the future, we plan to employ prun-
ing or quantization methods to compress the model parame-
ters, striving for a lightweight and efficient Real-ISR model.
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