

Challenges

> One network for one task

Problems

- one network for one sub-task
- \succ Can we have one trained network that solves all the different image processing tasks jointly?

- fully connected layer for one corresponding convolution layer. The input to the meta-network is **one parameter** that corresponds to each specific task or sub-task.
- The base network and meta network are jointly learned with one supervised loss.

 $\mathcal{L} = \|\mathcal{N}_{base}(\mathcal{N}_{weight}(\overrightarrow{\gamma}), \mathcal{I}, E) - f(\overrightarrow{\gamma}, \mathcal{I})\|^2$

Decouple Learning for Parameterized Image Operators

Qingnan Fan^{1,3*}, Dongdong Chen^{2*}, Lu Yuan⁴, Gang Hua⁴, Nenghai Yu², Baoquan Chen^{5,1} ¹Shandong University, ²University of Science and Technology of China, ³Beijing Film Academy, ⁴Microsoft Research, ⁵Peking University

Codes and model: https://github.com/fqnchina/DecoupleLearning

How powerful is the decouple learning framework? > one network for all the sub-tasks

	L_0			WLS				RTV			RGF			WMF			LLF							
metric	γ	single	nume.	diff	γ	single	e nume.	diff	γ	single	nume.	diff												
PSNR	0.002	40.69	39.46	1.23	0.100	44.00	42.12	1.88	0.002	41.11	40.66	0.45	1.00	41.77	37.03	4.74	1.00	39.06	36.79	2.27	2	38.00	37.83	0.17
	0.004	38.96	38.72	0.24	0.215	43.14	42.64	0.50	0.004	40.91	41.10	0.19	3.25	38.36	38.27	0.09	3.25	39.78	38.76	1.02	3	34.64	35.71	1.07
	0.020	36.07	35.71	0.36	1.000	41.93	41.63	0.30	0.010	40.50	41.07	0.57	5.50	38.11	38.35	0.24	5.50	39.94	38.53	1.41	5	32.34	32.29	0.05
	0.093	33.08	31.92	1.16	4.641	39.42	39.64	0.22	0.022	41.07	40.77	0.30	7.75	37.65	37.99	0.34	7.75	40.06	39.20	0.86	7	30.11	29.91	0.20
	0.200	31.75	30.43	1.32	10.00	39.13	38.51	0.62	0.050	40.73	39.18	1.55	10.0	37.52	37.08	0.44	10.0	39.49	38.72	0.77	8	29.53	28.95	0.58
	ave.	36.11	35.25	0.86	ave.	41.52	40.91	0.61	ave.	40.86	40.55	0.31	ave.	38.68	37.74	0.93	ave.	39.66	38.40	1.26	ave.	32.93	32.94	0.01
	0.002	0.989	0.988	0.001	0.100	0.994	0.993	0.001	0.002	0.987	0.988	0.001	1.00	0.994	0.981	0.013	1.00	0.985	0.972	0.013	2	0.992	0.992	0
	0.004	0.986	0.987	0.001	0.215	0.993	0.993	0	0.004	0.989	0.990	0.001	3.25	0.986	0.986	0	3.25	0.985	0.979	0.006	3	0.988	0.990	0.02
CCIM	0.020	0.982	0.981	0.001	1.000	0.992	0.991	0.001	0.010	0.990	0.991	0.001	5.50	0.985	0.986	0.001	5.50	0.986	0.981	0.005	5	0.983	0.984	0.01
221M	0.093	0.977	0.973	0.004	4.641	0.987	0.989	0.002	0.022	0.992	0.992	0	7.75	0.984	0.985	0.001	7.75	0.986	0.985	0.001	7	0.977	0.977	0
	0.200	0.973	0.968	0.005	10.00	0.986	0.987	0.001	0.050	0.992	0.990	0.002	10.0	0.984	0.982	0.002	10.0	0.986	0.984	0.002	8	0.976	0.974	0.02
	ave.	0.981	0.979	0.002	ave.	0.990	0.990	0	ave.	0.990	0.990	0	ave.	0.986	0.984	0.002	ave.	0.985	0.980	0.005	ave.	0.983	0.983	0

\succ one network for all the tasks

#ope.	L_0	WLS	RTV	RGF	WMF	LLF	SR	denoise	deblock	derain	ave.
1	35.25	40.91	40.55	37.74	38.40	32.94	29.13	28.70	30.21	29.86	34.36
6/4	33.27	37.39	37.00	35.41	36.06	30.08	28.89	28.67	30.10	30.32	32.72
10	32.67	36.59	36.03	34.64	35.08	29.77	29.69	30.45	28.53	28.36	32.18
1	0.979	0.991	0.990	0.984	0.980	0.984	0.804	$0.804 \\ 0.800 \\ 0.895$	0.847	0.893	0.925
6/4	0.969	0.980	0.979	0.974	0.967	0.976	0.797		0.842	0.893	0.918
10	0.965	0.978	0.975	0.969	0.962	0.971	0.837		0.789	0.789	0.913

Visual results

0.004ground truth

0.944

0.986

SSIM	BGU DBL Ours	0.912 0.852 0.946	0.915 0.890 0.971	0 0 0

Deeper understanding of decouple learning framework > How large the real receptive field is? > Weight visualization

(a) Input image		(b) $\lambda = 0.01$		(c) $\lambda = 0.02$		(d) $\lambda = 0.03$		(e) $\lambda = 0$.04			
metric	method	L_0	WLS	RTV	RGF	WMF	LLF	LLF remap	WLS enhance	Stylization	Abstraction	Average
PSNR	norm(1) norm(7) norm(14) norm(19)	31.06 30.86 30.64 28.53	34.86 34.75 34.31 31.22	33.75 33.54 33.06 29.46	32.87 32.97 32.42 29.72	33.49 33.39 33.21 30.69	29.22 29.24 29.15 27.03	32.21 31.99 31.80 30.36	32.59 32.79 32.53 29.78	27.26 27.07 27.05 25.57	24.81 24.81 24.83 24.38	31.21 31.14 30.90 28.67
	norm(all) conv(all)	31.71 31.64	35.51 35.02	34.31 33.67	33.10 32.81	33.96 33.97	29.56 29.59	32.45 32.52	33.11 32.69	27.32 28.12	24.38 25.21 26.35	31.62 31.63
SSIM	norm(1) norm(7) norm(14) norm(19)	0.949 0.945 0.935 0.871	0.971 0.969 0.963 0.890	$0.959 \\ 0.958 \\ 0.942 \\ 0.809$	0.954 0.955 0.947 0.881	0.948 0.948 0.945 0.876	0.966 0.967 0.966 0.947	0.981 0.980 0.979 0.970	0.982 0.982 0.980 0.965	0.923 0.917 0.917 0.889	0.819 0.812 0.816 0.796	0.945 0.943 0.939 0.889
	norm(all) conv(all)	0.954 0.954	0.972 0.969	0.960 0.952	0.956 0.953	0.953 0.954	0.970 0.969	0.982 0.982	0.984 0.982	0.924 0.925	0.823 0.833	0.947 0.947

Microsoft[®] Research 微软亚洲研究院

0.833

0.943

0.502

0.835

0.887

0.927