

A Generic Deep Architecture for Single Image Reflection Removal and Image Smoothing

Qingnan Fan¹, Jiaolong Yang², Gang Hua², Baoquan Chen^{1,3}, David Wipf² ¹Shandong University ²Microsoft Research ³Shenzhen Research Institute, Shandong University Microsoft[®] **Research** 淡软亚洲研究院

Codes and model: <u>https://github.com/fqnchina/CEILNet</u>

Input Image

Challenges

- Single image reflection removal:
 - Underdetermined, weighted combination of scenes from the two sides of glass window. $I = w \cdot L_h + (1 - w) \cdot L_r$
 - Lacking plenty of reflection and clear image pairs for training the deep neural network.
 - Naively mixing two natural images by scaling different layers with weights summed to 1 does not work!
- Image smoothing:
 - Slow running time of traditional image smoothers.

Observation

- Edge information plays a very important role in many low-level vision tasks, such as
 - layer separation (reflection removal)

Image filtering (image smoothing)

Input Image

 Approximation of existing edge-aware filters with deep networks: Unsatisfactory quality (PSNR < 35).

Contribution1: Cascaded Edge and Image Learning Network (CEILNet)

Instead of predicting images directly, we separate the end-to-end FCN into two sub networks:

- Target edge prediction
- Target image reconstruction
- Both tasks are much more easier and learned with the similar CNN structure, 32-layer FCN.
- Edge map represents the color difference between the 4 adjacent pixels.

Contribution2: Reflection Image Synthesis Pipeline

1. $\widetilde{R} \leftarrow gauss_blur_{\sigma}(R)$ with $\sigma \sim \mathcal{U}(2,5)$ 2. $I \leftarrow \widetilde{R} + B$ 3. $m \leftarrow mean(\{I(x,c) | I(x,c) > 1, \forall x, \forall c = 1,2,3\})$

4. $\widetilde{R}(x,c) \leftarrow \widetilde{R}(x,c) - \gamma \cdot (m-1), \forall x, \forall c; \gamma \text{ set as } 1.3$ 5. $\widetilde{R} \leftarrow Clip_{[0,1]}(\widetilde{R})$ 6. $I \leftarrow Clip_{[0,1]}(B + \widetilde{R})$ Note *m* is adaptively-computed, and subtracted by \widetilde{R} .

Ablation Study of Deep Network Demonstration of necessity of I-CNN by replacing it with traditional method Domain Transform (DT), and importance of E-CNN by using I-CNN only.

Performance Evaluation of Reflection Removal Task

Guess which is real and which is synthetic?

	MSE	PSNR SSIM
DT + input image edge	124.41	27.38 0.806
DT + pred. edge by E-CNN	51.26	31.17 0.964
DT + GT edge	45.67	31.66 0.971
I-CNN only	37.79	32.58 0.969
I-CNN only (64 layers)	31.86	33.33 0.973
I-CNN with input edge (64 layers)	22.50	34.86 0.979
CEILNet	13.34	37.10 0.989

Performance Evaluation of Image Smoothing Task

Qua	lity	BLF	IBL	F I	L_0	RGF	RTV	WLS	S WN	⁄IF	L_1	Ave.
PSNR	Xu15 Ours	35.02 43.76	32.9 38.1	7 31 8 37	.66 7 .10	32.49 42.05	35.68 44.03	33.92 41.3 9	2 29.0 39. 7	62 70 3	6.99	32.62 40.40
SSIM	Xu15 Ours	0.976 0.995	0.96 0.98	2 0. 9 0.	966 989	0.950 0.991	0.974 0.994	0.963 0.99 4	3 0.90 1 0.9 3	60 89 (.982	0.964 0.990
Test	time (s)	BLF	IBLF	RGF	L_0	WMF	RTV	WLS	L_1	Xu15	Liu16	Ours
QVGA (3 VGA (6 720p (12	320×240) 540×480) 280×720)	0.03 0.12 0.34	$\begin{array}{c} 0.11 \\ 0.40 \\ 0.97 \end{array}$	0.22 0.73 1.87	0.17 0.66 2.43	0.62 2.18 4.98	0.41 1.80 5.74	0.70 3.34 13.26	32.18 212.07 904.36	0.23 0.76 2.16	0.07 0.14 0.33	0.03 0.12 0.35