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ABSTRACT

It is essential yet challenging for future home-assistant robots to understand and
manipulate diverse 3D objects in daily human environments. Towards building
scalable systems that can perform diverse manipulation tasks over various 3D
shapes, recent works have advocated and demonstrated promising results learning
visual actionable affordance, which labels every point over the input 3D geometry
with an action likelihood of accomplishing the downstream task (e.g., pushing or
picking-up). However, these works only studied single-gripper manipulation tasks,
yet many real-world tasks require two hands to achieve collaboratively. In this
work, we propose a novel learning framework, DualAfford, to learn collaborative
affordance for dual-gripper manipulation tasks. The core design of the approach is
to reduce the quadratic problem for two grippers into two disentangled yet intercon-
nected subtasks for efficient learning. Using the large-scale PartNet-Mobility and
ShapeNet datasets, we set up four benchmark tasks for dual-gripper manipulation.
Experiments prove the effectiveness and superiority of our method over baselines.

1 INTRODUCTION

We, humans, spend little or no effort perceiving and interacting with diverse 3D objects to accomplish
everyday tasks in our daily lives. It is, however, an extremely challenging task for developing artificial
intelligent robots to achieve similar capabilities due to the exceptionally rich 3D object space and high
complexity manipulating with diverse 3D geometry for different downstream tasks. While researchers
have recently made many great advances in 3D shape recognition (Chang et al., 2015; Wu et al.,
2015), pose estimation (Wang et al., 2019; Xiang et al., 2017), and semantic understandings (Hu et al.,
2018; Mo et al., 2019; Savva et al., 2015) from the vision community, as well as grasping (Mahler
et al., 2019; Pinto & Gupta, 2016) and manipulating 3D objects (Chen et al., 2021; Xu et al., 2020)
on the robotic fronts, there are still huge perception-interaction gaps (Batra et al., 2020; Gadre et al.,
2021; Shen et al., 2021; Xiang et al., 2020) to close for enabling future home-assistant autonomous
systems in the unstructured and complicated human environments.

One of the core challenges in bridging the gaps is figuring out good visual representations of 3D
objects that are generalizable across diverse 3D shapes at a large scale and directly consumable by
downstream planners and controllers for robotic manipulation. Recent works (Mo et al., 2021; Wu
et al., 2022) have proposed a novel perception-interaction handshaking representation for 3D objects
– visual actionable affordance, which essentially predicts an action likelihood for accomplishing the
given downstream manipulation task at each point on the 3D input geometry. Such visual actionable
affordance, trained across diverse 3D shape geometry (e.g., refrigerators, microwaves) and for a
specific downstream manipulation task (e.g., pushing), is proven to generalize to novel unseen objects
(e.g., tables) and benefits downstream robotic executions (e.g., more efficient exploration).

Though showing promising results, past works (Mo et al., 2021; Wu et al., 2022) are limited to
single-gripper manipulation tasks. However, future home-assistant robots shall have two hands just
like us humans, if not more, and many real-world tasks require two hands to achieve collaboratively.
For example (Figure 1), to steadily pick up a heavy bucket, two grippers need to grasp it at two top
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Figure 1: Given different shapes and manipulation tasks (e.g., pushing the keyboard in the direction
indicated by the red arrow), our proposed DualAfford framework predicts dual collaborative visual
actionable affordance and gripper orientations. The prediction for the second gripper (b) is dependent
on the first (a). We can directly apply our network to real-world data.

edges and move in the same direction; to rotate a display anticlockwise, one gripper points downward
to hold it and the other gripper moves to the other side. Different manipulation patterns naturally
emerge when the two grippers collaboratively attempt to accomplish different downstream tasks.

In this paper, we study the dual-gripper manipulation tasks and investigate learning collaborative
visual actionable affordance. It is much more challenging to tackle dual-gripper manipulation tasks
than single-gripper ones as the degree-of-freedom in action spaces is doubled and two affordance
predictions are required due to the addition of the second gripper. Besides, the pair of affordance
maps for the two grippers needs to be learned collaboratively. As we can observe from Figure 1, the
affordance for the second gripper is dependent on the choice of the first gripper action. How to design
the learning framework to learn such collaborative affordance is a non-trivial question.

We propose a novel method DualAfford to tackle the problem. At the core of our design, DualAfford
disentangles the affordance learning problem of two grippers into two separate yet highly coupled
subtasks, reducing the complexity of the intrinsically quadratic problem. More concretely, the first
part of the network infers actionable locations for the first gripper where there exist second-gripper
actions to cooperate, while the second part predicts the affordance for the second gripper conditioned
on a given first-gripper action. The two parts of the system are trained as a holistic pipeline using the
interaction data collected by manipulating diverse 3D shapes in a physical simulator.

We evaluate the proposed method on four diverse dual-gripper manipulation tasks: pushing, rotating,
toppling and picking-up. We set up a benchmark for experiments using shapes from PartNet-Mobility
dataset (Mo et al., 2019; Xiang et al., 2020) and ShapeNet dataset (Chang et al., 2015). Quantitative
comparisons against baseline methods prove the effectiveness of the proposed framework. Qualitative
results further show that our method successfully learns interesting and reasonable dual-gripper
collaborative manipulation patterns when solving different tasks. To summarize, in this paper,

• We propose a novel architecture DualAfford to learn collaborative visual actionable affor-
dance for dual-gripper manipulation tasks over diverse 3D objects;

• We set up a benchmark built upon SAPIEN physical simulator (Xiang et al., 2020) using the
PartNet-Mobility and ShapeNet datasets (Chang et al., 2015; Mo et al., 2019; Xiang et al.,
2020) for four dual-gripper manipulation tasks;

• We show qualitative results and quantitative comparisons against three baselines to validate
the effectiveness and superiority of the proposed approach.

2 RELATED WORK

Dual-gripper Manipulation. Many studies, from both computer vision and robotics communities,
have been investigating dual-gripper or dual-arm manipulation (Chen et al., 2022; Simeonov et al.,
2020; Weng et al., 2022; Chitnis et al., 2020; Xie et al., 2020; Liu & Kitani, 2021; Liu et al., 2022).
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Vahrenkamp et al. (2009) presented two strategies for dual-arm planning: J+ and IK-RRT. Cohen
et al. (2014) proposed a heuristic search-based approach using a manipulation lattice graph. Ha et al.
(2020) presented a closed-loop and decentralized motion planner to avoid a collision. Multi-arm
manipulation has also been investigated in various applications: grasping (Pavlichenko et al., 2018),
pick-and-place (Shome & Bekris, 2019), and rearrangement (Shome et al., 2021; Hartmann et al.,
2021). Our work pays more attention to learning object-centric visual actionable affordance heatmaps
for dual-arm manipulation tasks, while previous works focus more on the planning and control sides.
Gadre et al. (2021) learns affordances but for interactively part segmentation, they use one gripper to
simply hold one articulated part, and use the other gripper to move the other articulated part.

Visual Affordance Prediction. Predicting affordance plays an important role in visual understand-
ing and benefits downstream robotic manipulation tasks, which has been widely used in many previous
works (Jiang et al., 2021b; Kokic et al., 2020; Mandikal & Grauman, 2021; Redmon & Angelova,
2015; Wang et al., 2021; Wu et al., 2022; 2023). For example, Kokic et al. (2017) used CNN to
propose a binary map indicating contact locations for task-specific grasping. Jiang et al. (2021a)
proposed the contact maps by exploiting the consistency between hand contact points and object
contact regions. Following Where2Act (Mo et al., 2021), we use dense affordance maps to suggest
action possibilities at every point on a 3D scan. In our work, we extend by learning two collaborative
affordance maps for two grippers that are in deep cooperation for accomplishing downstream tasks.

3 PROBLEM FORMULATION

General Setting. We place a random 3D object from a random category on the ground, given its
partially scanned point cloud observation O ∈ R

N×3 and a specific task l, the network is required to
propose two grippers actions u1 = (p1,R1) and u2 = (p2,R2), in which p is the contact point and R
is the manipulation orientation. All inputs and outputs are represented in the camera base coordinate
frame, with the z-axis aligned with the up direction and the x-axis points to the forward direction,
which is in align with real robot’s camera coordinate system.

Task Formulation. We formulate four benchmark tasks: pushing, rotating, toppling and picking-up,
which are widely used in manipulation benchmarks (Andrychowicz et al., 2017; Kumar et al., 2016;
Mousavian et al., 2019; OpenAI et al., 2021) and commonly used as subroutines in object grasping
and relocation (Chao et al., 2021; Mahler et al., 2019; Mandikal & Grauman, 2022; Rajeswaran et al.,
2018; Zeng et al., 2020). We set different success judgments for difference tasks, and here we describe
the pushing task as an example. Task l ∈ R

3 is a unit vector denoting the object’s goal pushing
direction. An object is successfully pushed if (1) its movement distance is over 0.05 unit-length, (2)
the difference between its actual motion direction l′ and goal direction l is within 30 degrees, (3) the
object should be moved steadily, i.e., the object can not be rotated or toppled by grippers.

4 METHOD

4.1 OVERVIEW OF DualAfford FRAMEWORK

Figure 2 presents the overview of our proposed DualAfford framework. Firstly, we collect large
amount of interaction data to supervise the perception networks. Since it is costly to collect human
annotations for dual-gripper manipulations, we use an interactive simulator named SAPIEN Xiang
et al. (2020). We sample offline interactions by using either a random data sampling method or an
optional reinforcement-learning (RL) augmented data sampling method described in Sec. 4.5.

We propose the novel Perception Module to learn collaborative visual actionable affordance and
interaction policy for dual-gripper manipulation tasks over diverse objects. To reduce the complexity
of the intrinsically quadratic problem of dual-gripper manipulation tasks, we disentangle the task
into two separate yet highly coupled subtasks. Specifically, let N denote the point number of the
point cloud, and θR denote the gripper orientation space on one point. If the network predicts the two

gripper actions simultaneously, the combinatorial search space will be O
(
(θR)

(N×N)
)
. However, our

Perception Module sequentially predicts two affordance maps and gripper actions in a conditional

manner, which reduces the search space to O
(
(θR)

(N+N)
)
. Therefore, we design two coupled

submodules in the Perception Module: the First Gripper Module M1 (left) and the Second Gripper
Module M2 (right), and each gripper module consists of three networks (Sec. 4.2).

The training and inference procedures, respectively indicated by the red and blue arrows in Figure 2,
share the same architecture but with reverse dataflow directions. For inference, the dataflow direction
is intuitive: M1 proposes u1, and then M2 proposes u2 conditioned on u1. Although such dataflow
guarantees the second gripper plays along with the first during inference, it cannot guarantee the first
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Figure 2: Our proposed DualAfford framework, first collects interaction data points in physics
simulation, then uses them to train the Perception Module, which contains the First Gripper Module
and the Second Gripper Module, and further enhances the cooperation between two grippers through
the Collaborative Adaption procedure. The training and the inference procedures, as respectively
indicated by the red and blue arrows, share the same architecture but with opposite dataflow directions.

gripper’s action is suitable for the second to collaborate with. To tackle this problem , for training,
we employ the reverse dataflow: M2 is trained first, and then M1 is trained with the awareness of
the trained M2. Specifically, given diverse u1 in training dataset, M2 is first trained to propose u2

collaborative with them. Then, with the trained M2 able to propose u2 collaborative with different u1,
M1 learns to propose u1 that are easy for M2 to propose successful collaborations. In this way, both
M1 and M2 are able to propose actions easy for the other to collaborate with.

Although such design encourages two grippers to cooperate, the two gripper modules are separately
trained using only offline collected data, and their proposed actions are never truly executed as a
whole, so they are not explicitly taught if their collaboration is successful. To further enhance their
cooperation, we introduce the Collaborative Adaptation procedure (Sec. 4.4), in which we execute
two grippers’ actions simultaneously in simulator, using the outcomes to provide training supervision.

4.2 PERCEPTION MODULE AND INFERENCE

To reduce the complexity of the intrinsically quadratic problem and relieve the learning burden of our
networks, we disentangle the dual-gripper learning problem into two separate yet coupled subtasks.
We design a conditional perception pipeline containing two submodules shown in Figure 3, in which
u2 is proposed conditioned on u1 during inference, while M1 is trained conditioned on the trained M2

during training. There are three networks in each gripper module: Affordance Network A , Proposal
Network P and Critic Network C . First, as the gripper action can be decomposed into a contact
point and a gripper orientation, we design Affordance Network and Proposal Network to respectively
predict them. Also, to evaluate whether an action of the gripper is suitable for collaboration, we
design Critic Network for this purpose. Below we describe the design of each module.

Backbone Feature Extractors. The networks in Perception Module may receive four kinds of
input entities or intermediate results: point cloud O, task l, contact point p, and gripper orientation
R. In different submodules, the backbone feature extractors share the same architectures. We use a
segmentation-version PointNet++ (Qi et al., 2017) to extract per-point feature fs ∈ R

128 from O, and
employ three MLP networks to respectively encode l, p, and R into fl ∈R

32, fp ∈R
32, and fR ∈R

32.

4.2.1 THE FIRST GRIPPER MODULE

The First Gripper Module contains three sequential networks. Given an object and a task configuration,
the Affordance Network A1 indicates where to interact by predicting affordance map, the Proposal
Network P1 suggests how to interact by predicting manipulation orientations, and the Critic Network
C1 evaluates the per-action success likelihood.

Affordance Network. This network A1 predicts an affordance score a1 ∈ [0,1] for each point p,
indicating the success likelihood when the first gripper interacts with the point, with the assumption
that there exists an expert second gripper collaborating with it. Aggregating the affordance scores,
we acquire an affordance map A1 over the partial observation, from which we can filter out low-rated
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Figure 3: Architecture details of the Perception Module. Given a 3D partial scan and a specific
task, our network sequentially predicts the first and second grippers’ affordance maps and manipula-
tion actions in a conditional manner. Each gripper module is composed of 1) an Affordance Network
A indicating where to interact; 2) a Proposal Network P suggesting how to interact; 3) a Critic
Network C evaluating the success likelihood of an interaction.

proposals and select a contact point p1 for the first gripper. This network is implemented as a
single-layer MLP that receives the feature concatenation of fs, fl and fp1

.

Proposal Network. This network P1 models the distribution of the gripper’s orientation R1 on the
given point p1. It is implemented as a conditional variational autoencoder (Sohn et al., 2015), where
an encoder maps the gripper orientation into a Gaussian noise z ∈ R

32, a decoder reconstructs it from
z. Implemented as MLPs, they both take the feature concatenation of fs, fl , and fp1

as the condition.

Critic Network. This network C1 rates the success likelihood of each manipulation orientation
on each point by predicting a scalar c1 ∈ [0,1]. A higher c1 indicates a higher potential for the
second gripper to collaboratively achieve the given task. It is implemented as a single-layer MLP that
consumes the feature concatenation of fs, fl , fp1

and fR1
.

4.2.2 THE SECOND GRIPPER MODULE

Conditioned on the first gripper action u1 = (p1,R1) proposed by M1, M2 first generates a point-
level collaborative affordance A2 for the second gripper and samples a contact point p2. Then, M2

proposes multiple candidate orientations, among which we can choose a suitable one as R2. The
design philosophy and implementations of M2 are the same as M1, except that all three networks
(A2, P2 and C2) take the first gripper’s action u1, i.e., p1 and R1, as the additional input.

4.3 TRAINING AND LOSSES

As shown in Figure 2, during inference (indicated by blue arrows), the first gripper predicts actions
without seeing how the second gripper will collaborate. To enable the first gripper to propose actions
easy for the second to collaborate with, we train the Perception Module in the dataflow direction
indicated by red arrows, as described in Sec. 4.1. We adopt the Critic Network C1 of the first gripper
as a bridge to connect two gripper modules. C1 scores whether an action of the first gripper is easy
for M2 to propose collaborative actions. With the trained C1, M1 will propose actions with the
assumption that there exists an expert gripper to cooperate with. Therefore, M1 and M2 will both
learn to collaborate with each other.

Critic Loss. It is relatively easy to train the second Critic Network C2. Given the interaction data
with the corresponding ground-truth interaction result r, where r = 1 means positive and r = 0 means
negative, we can train C2 using the standard binary cross-entropy loss. For simplicity, we use f in to
denote each network’s input feature concatenation, as mentioned in Sec.4.2:

LC2
= r jlog

(
C2( f in

p2
)
)
+(1− r j)log

(
1−C2( f in

p2
)
)
. (1)

However, for the first Critic Network C1, since we only know the first gripper’s action u1 = (p1,R1),
we can not directly obtain the ground-truth interaction outcome of a single action u1. To tackle this
problem, given the first gripper’s action, we evaluate it by estimating the potential for the second
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Figure 4: To train C1 that evaluates how the first action can collaborate with the trained Second Gripper
Module M2, we comprehensively use the trained A2, P2 and C2 of M2 to provide supervision.

gripper to collaboratively accomplish the given task. As shown in Figure 4, we comprehensively use
the trained A2, P2 and C2 of the Second Gripper Module M2. Specifically, to acquire the ground-
truth action score ĉ for the first gripper, we first use A2 to predict the collaborative affordance map
A2 and sample n contact points: p2,1, ..., p2,n, then we use P2 to sample m interaction orientations
on each contact point i: R2,i1, ...,R2,im. Finally, we use C2 to rate the scores of these actions:
c2,11, ...,c2,nm and calculate their average value. Thus we acquire the ground-truth score of C1, and
we apply L1 loss to measure the error between the prediction and the ground-truth:

ĉp1
=

1

nm

n

∑
j=1

m

∑
k=1

C2

(
f in
p2 j

,P2( f in
p2 j

,z jk)
)
; LC1

=
∣
∣C1( f in

p1
)− ĉp1

∣
∣ . (2)

Proposal Loss. P1 and P2 are implemented as cVAE (Sohn et al., 2015). For the i-th gripper, we
apply geodesic distance loss to measure the error between the reconstructed gripper orientation Ri
and ground-truth R̂i, and KL Divergence to measure the difference between two distributions:

LPi = Lgeo(Ri, R̂i)+DKL
(
q(z|R̂i, f in)||N (0,1)

)
. (3)

Affordance Loss. Similar to Where2Act (Mo et al., 2021), for each point, we adopt the ’affordance’
score as the expected success rate when executing action proposals generated by the Proposal Network
P , which can be directly evaluated by the Critic Network C . Specifically, to acquire the ground-truth
affordance score â for the i-th gripper, we sample n gripper orientations on the point pi using Pi, and
calculate their average action scores rated by Ci. We apply L1 loss to measure the error between the
prediction and the ground-truth affordance score on a certain point:

âpi =
1

n

n

∑
j=1

Ci
(

f in
pi
,Pi( f in

pi
,z j)

)
; LAi =

∣
∣Ai( f in

pi
)− âpi

∣
∣ . (4)

4.4 COLLABORATIVE ADAPTATION PROCEDURE

Although the above training procedure can enable two gripper modules to propose affordance and
actions collaboratively, their collaboration is limited, because they are trained in a separate and
sequential way using only offline collected data, without any real and simultaneous executions of
proposed actions. To further enhance the collaboration between the two gripper modules, we introduce
the Collaborative Adaptation procedure, in which the two modules are trained in a simultaneous
manner using online executed and collected data, with loss functions the same as in Sec. 4.3. In this
procedure, the proposed dual-gripper actions are simultaneously executed in the simulator, using
interaction outcomes to update the two gripper modules. In this way, the two gripper modules can
better understand whether their proposed actions are successful or not as they are aware of interaction
results, and thus the two separately trained modules are integrated into one collaborative system.

4.5 OFFLINE DATA COLLECTION

Instead of acquiring costly human annotations, we use SAPIEN (Xiang et al., 2020) to sample large
amount of offline interaction data. For each interaction trial with each object, we sample two gripper
actions u1,u2, and test the interaction result r. We define a trial to be positive when: (1) the two
grippers successfully achieve the task, e.g., pushing a display over a threshold length without rotating
it; (2) the task can be accomplished only by the collaboration of two grippers, i.e., when we replay
each gripper action without the other, the task can not be achieved. We represent each interaction
data as (O, l, p1, p2,R1,R2)→ r, and balance the number of positive and negative interactions. Here
we introduce two data collection methods: random and RL augmented data sampling.
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Figure 5: Qualitative results of Affordance Networks. In each block, we respectively show (1) task
represented by a red arrow, (2) object which should be moved from transparent to solid, (3) the first
affordance map predicted by A1, (4) the second affordance map predicted by A2 conditioned on the
first action. Left shapes are from training categories, while right shapes are from unseen categories.

Random Data Sampling. We can efficiently sample interaction data by parallelizing simulation
environments across multiple CPUs. For each data point, we first randomly sample two contact points
on the object point cloud, then we randomly sample two interaction orientations from the hemisphere
above the tangent plane around the point, and finally test the interaction result.

RL Augmented Data Sampling. For tasks with complexity, such as picking-up, it is nearly impos-
sible for a random policy to collect positive data. To tackle this problem, we propose the RL method.
We first leverage Where2Act (Mo et al., 2021) to propose a prior affordance map, highlighting where
to grasp. After sampling two contact points, we use SAC (Haarnoja et al., 2018) with the manually
designed dense reward functions to efficiently predict interaction orientations.

5 EXPERIMENTS

5.1 RESULTS AND ANALYSIS

We perform large-scale experiments under four dual-gripper manipulation tasks, and set up three
baselines for comparisons. Results prove the effectiveness and superiority of our proposed approach.

5.2 ENVIRONMENT SETTINGS AND DATASET

We follow the environment settings of Where2Act (Mo et al., 2021) except that we use two Franka
Panda Flying grippers. We conduct our experiments on SAPIEN (Xiang et al., 2020) simulator with
the large-scale PartNet-Mobility (Mo et al., 2019) and ShapeNet (Chang et al., 2015) dataset. To
analyze whether the learned representations can generalize to novel unseen categories, we reserve
some categories only for testing. See Supplementary Sec. C for more details.

5.3 EVALUATION METRICS, BASELINES AND ABLATION

Evaluation Metrics. To quantitatively evaluate the action proposal quality, we run interaction trials
in simulation and report sample-success-rate (Mo et al., 2021), which measures the percentage of
successful interactions among all interaction trials proposed by the networks.

Baselines. We compare our approach with three baselines and one ablated version: (1) A random
approach that randomly selects the contact points and gripper orientations. (2) A heuristic approach
in which we acquire the ground-truth object poses and hand-engineer a set of rules for different
tasks. For example, for the picking-up task, we set the two contact points on the objects’ left and
right top edges and set the two gripper orientations the same as the given picking-up direction. (3)
M-Where2Act: a dual-gripper Where2Act (Mo et al., 2021) approach. While Where2Act initially
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Figure 6: The per-point action scores predicted by Critic Networks C1 and C2. In each result block,
from left to right, we show the task, the input shape, the per-point success likelihood predicted by
C1 given the first gripper orientation, and the per-point success likelihood predicted by C2 given the
second gripper orientation, conditioned on the first gripper’s action.

considers interactions for a single gripper, we adapt it as a baseline by modifying each module in
Where2Act to consider the dual grippers as a combination, and assign a task l to it as well. (4) Ours
w/o CA: an ablated version of our method that removes the Collaborative Adaptation procedure.

Figure 5 presents the dual affordance maps predicted by our Affordance Networks A1 and A2, as
well as the proposed grippers interacting with the high-rated points. We can observe that: (1) the
affordance maps reasonably highlight where to interact (e.g., for picking-up, the grippers can only
grasp the top edge); (2) the affordance maps embody the cooperation between the two grippers (e.g.,
to collaboratively push a display, the two affordance maps sequentially highlight its left and right half
part, so that the display can be pushed steadily.) Besides, we find that our method has the ability to
generalize to novel unseen categories.

In Figure 6, we additionally visualize the results of Critic Networks C1 and C2. Given different
gripper orientations, the Critic Networks propose the per-point action scores over the whole point
cloud. We can observe that our network is aware of the shape geometries, gripper orientations and
tasks. For example, in the Rotate-Train-Categories block, the first map highlights a part of chair
surface since the first gripper is downward, and the second map accordingly highlights the chair back
on the other side given the second-gripper orientation, which collaboratively ensures the chair is
rotated clockwise. It is noteworthy that in the first map the chair surface has higher scores than the
arm, because the chair tends to skid when selecting the arm as a fulcrum for rotation.

Figure 7 (a) visualizes the diverse collaborative actions proposed by Proposal networks P1 and P2

on an example display. Our networks can propose different orientations on the same points.

Table 1: Baseline comparison on the sample-success-rate metric.
Train Categories Test Categories

pushing rotating toppling picking-up pushing rotating toppling picking-up

Random 7.40 10.40 6.40 3.00 3.20 9.00 3.00 6.00

Heuristic 32.40 24.20 54.00 31.93 25.80 21.80 38.00 37.90

M-Where2Act 28.00 15.67 36.60 5.00 23.40 10.67 25.60 13.80

Ours w/o CA 35.87 17.53 56.00 28.87 34.67 15.33 39.67 38.33

Ours 48.76 33.73 65.53 40.33 42.93 35.07 41.80 54.33

Table 1 presents the sample-success-rate of different methods over the four challenging tasks. We can
see that our method outperforms three baselines over all comparisons.
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Figure 7: (a) The diverse and collaborative actions proposed by the Proposal Networks P1 and
P2. (b) The promising results testing on real-world data. (c) The actionable affordance maps of the
ablated version that removes the Collaborative Adaptation procedure (left) and ours (right).

For the heuristic baseline, it gains relatively high numbers since it proposes actions with the ground-
truth object poses and orientations. However, the inter- and intra-category shape geometries are
exceptionally diverse, and we can not expect the hand-engineered rules to work for all shapes.
Moreover, in the real world, this approach needs more effort to acquire ground-truth information.

For M-Where2Act, it learns the dual contact points and orientations as a combination and has worse
performance. In comparison, our method disentangles the collaboration learning problem and reduces
the complexity. Besides, M-Where2Act consumes nearly quadratic time to give proposals for the
reason that it has to query the affordance scores of all the n∗n pair combinations of n points.

For Ours w/o CA, this ablated version of our method shows that the Collaborative Adaption procedure
helps boost the performance. Figure 7 (c) visualizes the affordance maps without (left) and with
(right) Collaborative Adaption procedure. We find that the affordance maps become more refined.
For example, to push the display, the affordance scores of the base become lower since it is difficult
to interact with; to collaboratively topple the dishwasher, in the second affordance map, the left front
surface receives lower scores while the right maintains relatively higher.

Table 2 shows the success rate of the Random Data Sampling and RL Augmented Data Sampling
method. The RL method significantly improves data collection efficiency on each object category.

Figure 1 and Figure 7 (b) show qualitative results that our networks can directly transfer the learned
affordance to real-world data. We show more real-robot experiments in supplementary Sec. A.

Table 2: The success rate of data collection in the picking-up task.

Train Categories Test Categories

eyeglasses bucket trash can pliers basket display box kitchen pot scissors laptop

Random-Sampling 0.06 0.12 0.04 < 0.01 0.09 0.03 0.03 0.06 < 0.01 < 0.01

RL-Sampling 6.12 9.65 5.26 5.79 6.41 9.78 5.12 9.18 6.38 7.13

6 CONCLUSION

In this paper, we proposed a novel framework DualAfford for learning collaborative actionable
affordance for dual-gripper manipulation over diverse 3D shapes. We set up large-scale benchmarks
for four dual-gripper manipulation tasks using the PartNet-Mobility and ShapeNet datasets. Results
proved the effectiveness of the approach and its superiority over the three baselines.
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