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Description : Do homework or read books while sitting on the chair.
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 Description : Fill sink with warm, sudsy water. Place dirty dishes in soapy water. With a washcloth or sponge scrub dishes clean. Rinse under clean warm water.
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Fig. 1. Our method generates scene-aware activity programs that are highly rational and executable. Here, we show three programs generated by our method,
where a virtual avatar is instructed to perform various human activities in different scenes according to the input descriptions.

We address the problem of scene-aware activity program generation, which
requires decomposing a given activity task into instructions that can be
sequentially performed within a target scene to complete the activity. While
existing methods have shown the ability to generate rational or executable
programs, generating programs with both high rationality and executability
still remains a challenge. Hence, we propose a novel method where the
key idea is to explicitly combine the language rationality of a powerful lan-
guage model with dynamic perception of the target scene where instructions
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are executed, to generate programs with high rationality and executabil-
ity. Our method iteratively generates instructions for the activity program.
Specifically, a two-branch feature encoder operates on a language-based and
graph-based representation of the current generation progress to extract
language features and scene graph features, respectively. These features are
then used by a predictor to generate the next instruction in the program.
Subsequently, another module performs the predicted action and updates
the scene for perception in the next iteration. Extensive evaluations are
conducted on the VirtualHome-Env dataset, showing the advantages of our
method over previous work. Key algorithmic designs are validated through
ablation studies, and results on other types of inputs are also presented to
show the generalizability of our method.
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1 INTRODUCTION
Digital agents are an important ingredient of virtual universes. A
high-quality AAA game, for example “The Witcher 3: Wild Hunt”,
typically includes dozens or even hundreds of digital agents, also
known as Non-Player Characters (NPC), with each executing a
pre-defined sequence of instructions to perform a designed activ-
ity. These instructions, along with the corresponding animations,
usually require a significant amount of effort to handcraft. In addi-
tion, with advancements in robotics, there have been high hopes
for empowering embodied agents, also known as humanoid robots,
with the intelligence to undertake household duties. For these rea-
sons, the automatic generation of instruction programs for common
human activities has become an important research problem.
In this work, we address the specific problem of scene-aware

activity program generation, which seeks to decompose an activity
task into a sequence of instructions that can be carried out in a
target scene. For example, for the “Wash dishes” activity shown in
Figure 1, instructions are generated to guide the agent to walk to the
kitchen, grab the plate, and then put it back in the sink for washing.

The key challenge of scene-aware activity program generation is
to guarantee the rationality and executability of the generated pro-
grams. Specifically, a rational program is comprised of categorically
reasonable instructions that accomplish the desired task, while an
executable program can be successfully executed on the target scene.
Thus, rationality is related to task completion at the semantic level
while executability is related to the application of the program to a
scene instance with a specific set of objects.
In order to achieve rationality or executability in activity pro-

gram generation, the past solutions to this problem fall into two
groups. One group of methods resort to large language models
(LLMs) trained on open-source text corpora [Huang et al. 2022; Lu
et al. 2022]. LLMs are usually parameterized with billions of weights
and trained with millions of linguistic data. Leveraging these strong
priors learned over large text corpora in activity program generation
confers good rationality on the generated programs. However, com-
mon LLMs do not take the target scenes into explicit consideration,
hence the generated programs are often at odds with the objects
within the target scene, resulting in failure when executing the in-
structions. The other group of methods learn from pairs of activities
and programs conditioned on the target scene, training neural net-
works in a supervised manner to predict program instructions for
a desired activity, so that the instructions are consistent with the
target scene [Liao et al. 2019; Tuli et al. 2021]. While instructions
generated from these models have better executability compared to
the LLM-based methods, with the absence of linguistics priors, these
methods tend to fail on complex tasks due to the lack of rationality
of the programs.

Our key idea to address these limitations is to explicitly leverage
the language rationality of pretrained language models and combine
it with dynamic perception of the target scene where instructions
are executed, to obtain the best of both worlds, generating programs
with high rationality and executability. In particular, we incorpo-
rate language guidance with a pre-trained language model, which
leverages object semantics and hence increases the category-level

inference ability for better rationality. On the other hand, we en-
able scene-aware program generation by explicitly representing the
scene as a graph that is iteratively updated during the instruction
prediction and execution. This greatly improves the perception of
the dynamically-changing scene and leads to higher executability.
Since LLMs and scene perception cannot be trivially combined,

we introduce a new method composed of novel modules that en-
able the combination of language- and graph-based features for
instruction generation. More specifically, our method consists of
three functional modules (Figure 2) that synthesize the instructions
of a program step by step to accomplish the desired activity. At
each iteration, given an activity description, a scene graph and a
partial program, our two-branch feature encoding module encodes
the description and partial program into: (1) A language feature that
combines the semantic information of nodes in the scene graph via
a pre-trained language model, and (2) A graph feature that embeds
the latent features of nodes in the scene graph. Then, our instruction
generation module derives the next instruction in an object-centric
manner. This is accomplished by formulating object selection as
a classification problem over all the object instances in the scene
graph. This module fuses three instance probabilities, namely graph-
guided probability, language-guided probability, and human-centric
probability, to guide the instruction generation. In the end, the in-
struction execution and scene update module performs the actions
on the corresponding objects, and updates the scene topology and
properties accordingly for the generation of the next instruction.
We conduct experiments on the VirtualHome-Env dataset to

demonstrate the effectiveness of our algorithm. The results show
that our method significantly improves the rationality and exe-
cutability of the generated programs. Specifically, we improve ex-
ecutability from 0.577 to 0.746 (29% improvement) over the best
SOTA zero-shot language-based method, and rationality from 0.348
to 0.438 (26% improvement) over the best SOTA graph-basedmethod.
We also improve significantly the completeness of the generated pro-
grams, which measures whether the generated programs complete
the specific activities in the given scene, increasing completeness
from 0.442 to 0.584 (32% improvement) when compared to the SOTA
method with best completeness results. In addition, we analyze
qualitative examples to demonstrate the improved rationality and
executability, and provide ablation studies and an analysis of the
generalizability of the method to other data.

In summary, our contributions are several-fold:

• We propose a novel scene-aware activity program generation
approach with language guidance, which confers rationality
and executability on the generated programs.

• We devise three functional modules, namely, two-branch fea-
ture encoding, instruction generation, and instruction exe-
cution and scene update, that collectively contribute to an
effective program generation method.

• Experiments demonstrate the excellent executability and ra-
tionality of the programs generated by our algorithm com-
pared to existing methods.

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.
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Fig. 2. Overview of our activity program generation method, which takes as input (a) an activity description and a scene with a human agent indicated by the
yellow H node. (b) At each iteration, the two-branch feature encoding module first encodes the current state information, including the scene state, partial
program, and description of the desired activity, to guide the instruction generation module in predicting the next instruction and target object. Finally, the
instruction execution and scene update module updates the scene topology and properties based on the execution of the predicted instruction. The method
iterates until (c) the final result with the full program and corresponding motion sequence is generated.

2 RELATED WORK
Activity program generation. Early work on activity program gen-

eration uses Markov Random Fields (MRF) or probabilistic gram-
mars to parse high-level instructions or demonstrations into action
plans [Nyga and Beetz 2012; Yang et al. 2014, 2015]. This line of work
is limited to a small set of activities due to the complexity of the
methods. Recent efforts in activity program generation fall mainly
into two categories. The first category of methods relies on a pre-
trained language model to extract high-level semantic features of
the text description for task decomposition. Jansen [2020] modeled
the translation problem of converting natural language directives
into detailed multi-step sequences of actions. Huang et al. [2022]
proposed a zero-shot planner that conditions existing demonstra-
tions and semantically translates the plans into admissible actions.
Lu et al. [2022] introduced a neuro-symbolic procedural PLANner
(PLAN) that elicits procedural planning knowledge from a large
language model (LLM) with commonsense-infused prompting. The
aforementioned approaches do not have the ability of explicit 3D
perception of the target environment and excel at improving the
rationality of the program, but not the executability.

The second category of methods condition the activity program
generation problem on the target scene. Puig et al. [2018] created
the VirtualHome dataset by crowd-sourcing programs for a variety
of activities that happen in people’s homes, and provided a num-
ber of 3D indoor scenes for executing the programs in a virtual
environment. Based on this dataset, Liao et al. [2019] addressed the
problem of environment-aware program generation. They proposed
ResActGraph, a network that generates a program from an envi-
ronment graph, where a node representing an object is selected
for interaction at each step. TANGO [Tuli et al. 2021] enhances
ResActGraph [Liao et al. 2019] with commonsense knowledge from
ConceptNet [Speer et al. 2017] and a goal-conditioned attention
mechanism to help decode the programs. However, since TANGO
takes as input the goal state of the scene, it is difficult to extend
the method to derive activity programs from input descriptions. In
general, due to the lack of a more sophisticated language prior to
facilitate the program generation, all the approaches discussed in
this paragraph are good at improving the executability of a program
in a target 3D scene, but not the rationality.

Language grounding in 3D Scenes. Prior work has also investigated
how to ground natural language in 3D scenes for many other tasks.
Early methods [Artzi and Zettlemoyer 2013; Misra et al. 2015, 2016;
Tenorth et al. 2010] relied on ruled-based lexical analysis or semantic
parsing to resolve linguistic ambiguities in language instructions.
These methods exhibit limited generalization ability on complex
tasks and scenes. Due to the significant development of natural
language modeling, pre-trained language models have performed
well on various tasks related to 3D object/scene perception, such
as object manipulation [Lynch and Sermanet 2020a,b], navigation
[Fried et al. 2018; Majumdar et al. 2020; Wang et al. 2019], and
3D question answering [Lei et al. 2021; Ye et al. 2022]. Benefiting
from the significantly increased network parameters and text data,
recent work directly leverages large language models [Brown et al.
2020; Chen et al. 2021; Wei et al. 2021] on high-level task planning
for embodied agents without any further fine-tuning [Ahn et al.
2022; Huang et al. 2022]. This class of work has performed well
in large-scale simulated environments for embodied AI such as
procedurally-generated [Deitke et al. 2022; Kolve et al. 2017; Li et al.
2023] and real scanned environments [Ramakrishnan et al. 2021].

Dynamic graph learning. Dynamic graph learning [Rossi et al.
2020] updates the features of nodes in a graph according to instant
graph changes and can be separated into two categories: discrete-
time dynamic graph learning (DTDGL) and continuous-time dy-
namic graph learning (CTDGL). DTDGL learns the node embedding
by aggregating information of graph snapshots from different time
steps [Lu et al. 2019; Manessi et al. 2020; Sankar et al. 2020]. On
the other hand, CTDGL aims to capture the temporal evolution
pattern of the graph and dynamically updates the node features in
the continuous time domain [Rossi et al. 2020; Trivedi et al. 2019;
Zhang et al. 2020]. Inspired by these approaches, we propose to
update the topology and node features of the scene graph according
to instantaneous instruction execution in the target 3D scene.

3 OVERVIEW
Given an activity description D, a target scene S, and a human
agent H , our goal is to generate a scene-specific program P that
can be used to instruct the human agent to perform a sequence of
actions on the object instances in the given scene to accomplish
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Fig. 3. Two-branch feature encoding: An activity description and partial program (center column) are encoded into a language feature 𝐹 𝑡
𝑙
(left) through a

pre-trained language model, and into a graph feature 𝐹 𝑡𝑔 (right) through action embedding and node features extraction.

the desired activity. As the states of both the human agent and
the objects that the agent interacts with will get updated during
program execution, and in turn affect the decision-making process,
we adopt an online program generation approach to synthesize the
instructions. Figure 2 provides an overview of our method.

Our method operates in an iterative manner and synthesizes one
instruction per iteration based on the dynamic changes of the scene
and agent states (Figure 2 (b)). Specifically, after 𝑡 iterations of the
method, we will have generated a partial program P𝑡 consisting of
𝑡 instructions, each of which is composed of one atomic action and
at most two object instances in the scene that the agent interacts
with. The current scene and human agent are encoded into a scene
graph G𝑡 , with each node associated with an object or human in-
stance along with its corresponding properties, and connectivity
determined by spatial adjacency. The activity description D is kept
fixed during the whole process.

Then, the two-branch feature encoding module encodes the partial
program P𝑡 , the current scene graph G𝑡 , and the descriptionD into
a language feature 𝐹 𝑡

𝑙
and a graph feature 𝐹 𝑡𝑔 . These two features

are used by the instruction generation module to predict the next
instruction and target object(s), so that we are able to incorporate
guidance from a pre-trained language model and the current scene
graph into the instruction generation. Finally, the instruction exe-
cution and scene update module executes the predicted instruction
and updates the scene graph in preparation for the next iteration.
The method iterates until a stop instruction is generated.

The output of the method is the complete, scene-aware program
for carrying out the specified activity in the input scene (Figure 2 (c)).
The sequence of instructions in the program can also be interpreted
as a motion sequence of the agent in the scene.

4 ITERATIVE INSTRUCTION GENERATION
In this section, we discuss our method in more detail.

Input and output of each iteration. Each iteration of our method
takes as input the current scene graph G𝑡 , the activity description
D, and the partial program P𝑡 , and synthesizes one instruction
which is appended to P𝑡 . The scene graph at step 𝑡 is notated as
G𝑡 = (𝑉 𝑡 , 𝐸𝑡 ), where 𝑉 𝑡 = {𝑣𝑡

𝑖
}𝑁𝑉

𝑖=1 denotes a set of 𝑁𝑉 nodes and
𝐸𝑡 = {𝑒𝑡

𝑖 𝑗
|𝑑 (𝑣𝑡

𝑖
, 𝑣𝑡

𝑗
) ≤ 𝛿} denotes the edges connecting nodes whose

physical distance 𝑑 (𝑣𝑡
𝑖
, 𝑣𝑡

𝑗
) is less than a certain threshold 𝛿 . Each

node 𝑣𝑡
𝑖
is represented by 𝑣𝑡

𝑖
= (𝑐𝑖 , 𝑓𝑖 , 𝑠𝑡𝑖 , 𝑧

𝑡
𝑖
), where 𝑐𝑖 denotes the

category label of the corresponding object, 𝑓𝑖 denotes the affordance,

such as “grabbable” or “sittable”, 𝑠𝑡
𝑖
denotes the instance state, such

as “on” or “off” for a TV, and 𝑧𝑡
𝑖
is a latent feature. Note that both

the category label 𝑐𝑖 and affordance 𝑓𝑖 of each instance are fixed
during the whole process, while the state 𝑠𝑡

𝑖
is updated if executable

actions are performed on the instance and the feature 𝑧𝑡
𝑖
is updated

at each iteration. Each edge has a property 𝑒𝑡
𝑖 𝑗

∈ { “on”, “inside”,
“close to”, “face at”, “between”} that represents the spatial relation
between two nodes.
The current program P𝑡 consists of a sequence of instructions

P𝑡 = {𝐴𝑘 }𝑡
𝑘=1, where each instruction is further denoted as 𝐴𝑘 =

(𝑎𝑘 , 𝑣𝑘
𝑖_1, 𝑣

𝑘
𝑖_2), with 𝑎

𝑘 representing the atomic action selected from
a predefined action set, and 𝑣𝑘

𝑖_1 and 𝑣
𝑘
𝑖_2 representing the two ob-

jects selected from 𝑉 𝑡 . Thus, the scene graph information G𝑡 is
incorporated as part of the program P𝑡 for later feature encod-
ing. At the conclusion of one iteration, a new instruction 𝐴𝑡+1 is
generated, which is appended to P𝑡 .

Termination of iterations. The scene graph also includes an extra
“stop” node and the atomic action set includes a “stop” action. We
terminate the program generation if a stop node or action is selected.
We also set the maximal number of generated instructions to 25.

4.1 Two-branch feature encoding
At each iteration, to enable better rationality and executability of the
next instruction generated, we extract two types of features from
the description D and partial program P𝑡 : a language feature 𝐹 𝑡

𝑙
focusing on the semantic information extracted from a pre-trained
language model, and a graph feature 𝐹 𝑡𝑔 focusing on the learned
node embedding extracted from the scene graph (Figure 3).

Language feature. To aid the program generation with semantic
information, we transform the partial program P𝑡 together with the
description D into a natural language paragraph, and obtain a pro-
gram feature using the pre-trained GPT-2 language model [Radford
et al. 2019], as shown in Figure 3 (left). In detail, we first trans-
late each instruction 𝐴𝑘 , in the form of the action label 𝑎𝑘 and the
category labels of the involved objects (𝑐𝑘

𝑖_1, 𝑐
𝑘
𝑖_2), into a template

sentence 𝐴𝑘
𝑐 following [Huang et al. 2022]. Then we gather all the

translated instruction sentences P𝑡
𝑐 = {𝐴𝑘

𝑐 }𝑡𝑘=1 and the description
D together, and feed them into a prompt template, to generate a
category-aware long prompt. By feeding the prompt into GPT-2,
we obtain a sequence of contextualized representations for each
word in the prompt. Thanks to the causal attention mechanism in

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.
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(bottom-right) that compose a program instruction.

GPT-2, the latent representation of the last word incorporates the
information of all the sentences, and hence is treated as the language
feature 𝐹 𝑡

𝑙
.

Graph feature. To make the program generation scene-aware, we
further extract scene-related information from the partial program
P𝑡 and the description D, as shown in Figure 3 (right). In detail, for
each instruction 𝐴𝑘 in the program, we obtain its feature encoding
𝐹𝑘
𝐴
by feeding the concatenation of the action embedding E𝑎 (𝑎𝑘 )

and two instance features (𝑧𝑘
𝑖_1, 𝑧

𝑘
𝑖_2) from the scene graph into

a Multi-Layer Perceptron (MLP) network. The embedding of each
action is randomly initialized and then optimized during the training,
while the instance features are the node features extracted from the
current graph G𝑡 . All the instruction features are further passed to
a gated recurrent unit (GRU) [Cho et al. 2014] to obtain the instance-
aware program feature 𝐹 𝑡P . Likewise, for the description D, we first
convert it into a sequence of word embeddings [Mikolov et al. 2013],
and then feed them to another GRU to obtain the description feature
𝐹 𝑡D . Note that the word embeddings also get updated during the
training. Finally, 𝐹 𝑡P and 𝐹 𝑡D are concatenated and passed through
an MLP network to obtain the desired graph feature 𝐹 𝑡𝑔 .

4.2 Instruction generation
With the aforementioned features 𝐹 𝑡

𝑙
and 𝐹 𝑡𝑔 as input, we utilize

an instruction generation network to derive the next instruction
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Fig. 5. Prediction of the second object for interaction based on global fea-
tures and conditioned on the action and object already selected.

𝐴𝑡+1 = (𝑎𝑡+1, 𝑣𝑡+1
𝑖_1 , 𝑣

𝑡+1
𝑖_2 ). Actions to be performed usually have a

strong dependency on the state of the objects involved in the action,
for example, to “Watch TV”, we need to identify the TV and “turn
it on” first if its current state is “off”. Hence, we opt to predict the
instruction in an object-centric manner, where we select the object
instance involved in the action first, and then the appropriate action
as shown in Figure 4.

We formulate object selection as a classification problem over all
the object instances in the current scene graph, where the probability
of an instance is obtained by fusing three distinct probabilities: a
graph-guided probability 𝑃𝑡𝑔 based only on the graph features, a
language-guided probability 𝑃𝑡

𝑙
considering semantic inference based

on the language features, and a human-centric probability 𝑃𝑡
ℎ
driven

by the link probability to the human agent. We first introduce the
three types of instance probabilities for object selection and then
elaborate more on how to generate the next instruction with the
estimated probabilities.

Graph-guided probability. The graph-guided probability is pre-
dicted using all the graph features, including the instance-wise latent
feature 𝑧𝑡 and the global graph feature 𝐹 𝑡𝑔 . For each instance 𝑖 , its
graph-guided instance probability 𝑃𝑡

𝑔,𝑖
is obtained by feeding the

concatenation of 𝑧𝑡
𝑖
and 𝐹 𝑡𝑔 to a shared MLP network.

Language-guided probability. To further guide the object selection
using semantic information, we first infer a category probability
𝑃𝑡𝑐 , which represents the probability of each category to be inter-
acted with at the semantic level. Then, we covert it into the desired
language-guided instance probability 𝑃𝑡

𝑙
by mapping the category

probability to each object instance in the scene according to their
category label.
In order to estimate the category probability, a straightforward

solution is to directly leverage the aforementioned language fea-
ture 𝐹 𝑡

𝑙
, which however lacks key information with respect to the

scene and hence may hinder the performance of object selection.
Thus, we propose to extract the global scene information from the
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Fig. 6. Instruction execution and scene update: given the current scene graph, memory, and instruction, the instruction is executed to modify the graph, and
the node features are updated in the memory-based feature update and then in the activity-aware feature propagation.

graph-guided probability first, and then fuse it with the language
feature to obtain an estimate for the category probability. To be spe-
cific, we conduct a weighted sum of the latent node representation
𝑍 𝑡 = {𝑧𝑡

𝑖
}𝑁𝑉

𝑖=1 based on the node-wise graph-guided probability 𝑃𝑡𝑔

to produce the global scene feature 𝐹 𝑡S . Then, we concatenate 𝐹
𝑡
S

and 𝐹 𝑡
𝑙
to predict the category probability 𝑃𝑡𝑐 = {𝑃𝑡

𝑐,𝑖
}𝑁𝐶

𝑖=1 via an MLP
network, where 𝑁𝐶 denotes the number of categories.

Human-centric probability. To constrain the object selection in
terms of the adjacency of the human agent node, we further predict
the human-centric probability, which indicates the link probabil-
ity of the human agent node to each object node in the next time
step. We first obtain a historical human feature 𝐹 𝑡

ℎ
by feeding all

of the historic node features {𝑧𝑘
ℎ
}𝑡
𝑘=1 into a GRU. Then 𝐹 𝑡

ℎ
is con-

catenated with the graph feature 𝐹 𝑡𝑔 , language feature 𝐹 𝑡𝑙 , as well
as the instance-wise latent feature 𝑧𝑡

𝑖
to predict the corresponding

human-centric instance probability 𝑃𝑡
ℎ
through an MLP network.

Instruction generation. We mix the three instance probabilities to
obtain the fused instance probability 𝑃𝑡

𝑓
, and select the instance with

the highest probability as the object 𝑣𝑡+1
𝑖_1 for interaction. Specifically,

we sum up the distribution of the three instance probabilities which
are not normalized, and then normalize the resulting distribution
to produce the fused instance probability 𝑃𝑡

𝑓
. The reason for this

design is that the network can adaptively learn how these three
probabilities should be combined by adjusting the scale of values in
their predicted distributions.

To select the appropriate action, we estimate the action probability
𝑃𝑡𝑎 from the feature obtained by concatenating the global graph and
language feature (𝐹 𝑡𝑔 , 𝐹 𝑡𝑙 ) along with the latent feature of the selected
object 𝑧𝑡+1

𝑖_1 . Then, the action candidate with the highest probability
is chosen as action 𝑎𝑡+1.
Some instructions involve a second object 𝑣𝑡+1

𝑖_2 for interaction
(e.g., “make coffee with milk”), which is predicted in a similar way
as the first object 𝑣𝑡+1

𝑖_1 . As shown in Figure 5, the estimation is
conditioned on the selected action 𝑎𝑡+1 and object 𝑣𝑡+1

𝑖_1 , but ignores
the effect of the human-centric probability which mainly guides
the selection of the first object. The final object 𝑣𝑡+1

𝑖_2 is selected
based on the maximum fused probability. Note that in most of cases,
only one object is needed to perform the selected action. Then, the
second object is assigned with a special “none” node for padding
the instruction.

4.3 Instruction execution and scene update
After predicting the instruction 𝐴𝑡+1 = (𝑎𝑡+1, 𝑣𝑡+1

𝑖_1 , 𝑣
𝑡+1
𝑖_2 ), we need

to let the human agent execute this instruction and update the scene
accordingly for the next instruction generation, as shown in Figure
6. During the instruction execution, the properties of the selected
object instances (𝑣𝑡+1

𝑖_1 , 𝑣
𝑡+1
𝑖_2 ) and the corresponding topology in the

scene graph are directly affected and should have an effect in the
generation of the next instruction. Experimentally, we also observed
that propagating such direct effects to the entire graph benefits the
global understanding of human activities.
Thus, we maintain two variants of node features, similar to the

work of TGN [Rossi et al. 2020]. One feature records all the direct
effects of instruction execution and is called the memory 𝑀𝑡 =

{𝑚𝑡
𝑖
}𝑁𝑉

𝑖=1 . The other feature, obtained after propagation over the
entire graph, is the node feature 𝑍 𝑡 we used in previous sections for
instruction prediction. We refer to the process of updating from𝑀𝑡

to 𝑀𝑡+1 as memory-based feature update and that of propagating
from𝑀𝑡+1 to 𝑍 𝑡+1 as activity-aware feature propagation, illustrated
in Figure 6.

Instruction execution. The instruction execution is performed us-
ing the rule-based simulator proposed in VirtualHome [Puig et al.
2018], which checks the executability of the instruction and updates
the node connectivity 𝐸𝑡+1 as well as the state 𝑆𝑡+1 = {𝑠𝑡+1

𝑖
}𝑁𝑉

𝑖=1
according to the execution of 𝐴𝑡+1. For example, in order to execute
the instruction “sit chair”, the current state of the human agent
should be “standing” and the chair should not be occupied by other
objects, i.e., there is no connecting edge from other objects with type
“on”. If any of the constraints is not satisfied, the instruction will not
be executed and𝑀𝑡 will simply be transferred to𝑀𝑡+1. Otherwise,
memory𝑀𝑡+1 will be updated based on the graph changes caused
by the instruction execution.

Memory-based feature update. To update the node features in
memory𝑀𝑡 , we consider three types of node feature updates, includ-
ing action-driven, state-driven, and connectivity-driven updates,
which refer to the feature updates caused by the action perfor-
mance, node state changes, and node connectivity changes, respec-
tively. The action-driven update concatenates the action embedding
E𝑎 (𝑎𝑡+1) with the node feature𝑚𝑡

𝑗
, where 𝑗 indicates the index of

either the human agent or objects involved in the action, and then
obtains the update message 𝑞𝑡+1

𝑎,𝑗
via an MLP network. Similarly,

the state-driven update concatenates the state embedding E𝑠 (𝑠𝑡+1𝑗
)
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Fig. 7. Attention weights among neighboring objects in the activity-aware
feature propagation. Darker colors indicate higher weights.

to the node feature 𝑚𝑡
𝑗
, where 𝑗 indicates the index of instances

whose states are updated due to the instruction execution, and then
obtains the update message 𝑞𝑡+1

𝑠,𝑗
via an MLP network. For a new

edge 𝑒𝑡+1
𝑖 𝑗

, the connectivity-driven update message is computed for
both connecting instances, where we concatenate both the node
features (𝑚𝑡

𝑖
,𝑚𝑡

𝑗
) and the relation embedding E𝑟 (𝑒𝑡+1𝑖 𝑗

) to predict the
update message 𝑞𝑡+1

𝑒,𝑗
for node 𝑗 via an MLP network. Note that one

object may receive different types of update messages. We simply
add these update messages to the corresponding node feature𝑚𝑡

𝑗
to

obtain the updated node state𝑚𝑡+1
𝑗

in the final memory𝑀𝑡+1.

Activity-aware feature propagation. With the updated memory
𝑀𝑡+1, we then propagate the features in the whole scene graph using
a GNN to obtain the final node features 𝑍 𝑡+1. One thing to note
here is that the scene connectivity is determined by the adjacency
between objects and the information each edge encodes is only the
spatial relationship, which makes the scene structure task-agnostic.
However, the importance of each object to its adjacent objects will
be different for different activities, and thus we need to make the
feature propagation activity-aware. To achieve this goal, we develop
an activity-aware heterogeneous graph attention network (aHGN)
based on Simple-HGN [Lv et al. 2021], where the attention weight
𝑤𝑖 𝑗 between two objects is conditioned on the global features 𝐹 𝑡𝑔 and
𝐹 𝑡
𝑙
with the accumulated program, activity, and scene information.
We obtain the final node features Z𝑡+1 for the next instruction

generation by an aHGN1 with one layer : 𝑍 𝑡+1 = aHGN1 (𝑀𝑡+1).
Note that 𝑍 0 = 𝑀0 is obtained by feeding the initialized node fea-
tures to another aHGN2 with two layers where the only global
feature is the activity description 𝐹 𝑡D . Details on the feature propa-
gation in the aHGN are provided in the supplementary material. For
each node 𝑗 , the category embedding E𝑐 (𝑐 𝑗 ) and state embedding
E𝑠 (𝑠0𝑗 ) are first concatenated and then passed to an MLP network
to provide the initial node feature.
In Figure 7, for the activity “Browse Internet”, we visualize the

attention weights in five consecutive steps among the three neigh-
boring objects “computer”, “chair”, and “keyboard”. We find that
the attention weight between the current object being interacted
with and the next object to be interacted with is relatively higher,
indicating that more information is transferred from the current
object of interaction to the next object of interaction. This adaptive
feature propagation updates the node features more accurately and
benefits the selection of the objects of interaction.

4.4 Loss Function
Our network is trained end-to-end with the loss function defined
for each iteration of instruction generation as follows:

𝐿 = 𝜔𝑎𝐿𝑎 + 𝜔 𝑓 𝐿𝑓 + 𝜔𝑐𝐿𝑐 + 𝜔ℎ𝐿ℎ, (1)

where 𝐿𝑎 is the action loss, 𝐿𝑓 = 𝐿1
𝑓
+ 𝐿2

𝑓
is the fused instance loss,

𝐿𝑐 = 𝐿1𝑐 + 𝐿2𝑐 is the category loss, and 𝐿ℎ is the human link loss. In
our experiments, we set 𝜔𝑎 = 𝜔 𝑓 = 1, 𝜔𝑐 = 0.1, and 𝜔ℎ = 0.01.
We use cross-entropy loss for all the four losses and compare the
prediction of action probability 𝑃𝑡𝑎 , fused instance probability 𝑃𝑡

𝑓
,

category probability 𝑃𝑡𝑐 , and human-centric probability 𝑃𝑡
ℎ
(as shown

in Figure 4) to the GT distributions. More details on the loss function
are provided in the supplementary material.

5 RESULTS AND EXPERIMENTS

5.1 Experiment setup
Dataset. Weevaluate ourmethod on the VirtualHome-Env dataset

[Liao et al. 2019], which consists of around 30,000 programs, each
paired with a corresponding scene. We use the same training/testing
splits as Liao et al. [2019] in all our experiments.

Evaluation metrics. Following Liao et al. [2019], we evaluate the
performance of program generation with well-established metrics
that compare a result to the ground truth program associated with
the given scene, including LCS, Exectuability, and Completeness.
LCS computes the normalized longest common subsequence be-

tween the generated and ground truth sequences of instructions,
which is sensitive to the order of the sequences. Executability refers
to the correctness in terms of execution, meaning that each instruc-
tion can be executed given the current scene state. Completeness
measures if the generated programs complete the specific activities
in the given scene, which is obtained by computing the difference
between the final scene graph after the execution of the predicted
program and the scene graph obtained by executing the ground truth
program. The difference is measured with the F1 score. In particu-
lar, only the sub-graphs containing the object instances mentioned
in the predicted program and the ground truth program are com-
pared. Note that the Completeness is computed only if the generated
program is executable, otherwise, it is set to zero. Thus, Complete-
ness can also be seen as a metric considering both rationality and
executability of the program in the given scene.
We also compute a Rationality metric to evaluate purely the se-

mantic rationality of the program regarding the given task [Puig
et al. 2018], by considering the semantic category of objects involved
in the generated program instead of the object instances mapped in
the given scene. Specifically, we first build a reference program by
extracting the necessary steps from the human annotated activity
description collected in [Puig et al. 2018], and then compute the
normalized longest common subsequence between this reference
program and the generated program at the semantic level.

5.2 Baseline methods and comparisons
As the two key contributions of our method include using language
guidance to improve the rationality of the activity programs and
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GT

Description : Watching TV from sofa.

Scene : Television (270) is unplugged and off. Couch (230) is close to Remote_Control (1000). Television (270), Couch (230) and Remote_Control (1000) are in Home_Office (179)     

Activity: Watch TV

Ours

VH (GPT-2)

ZP-S (GPT-3) 

Generation unmatched 

Generation not executable
GT missing in the generation

VH (GRU)

ZP (GPT-3) 

[Walk] <Home_Office> (179) [Find] <Television> (270) [PlugIn] <Television> (270)[Walk] <Television> (270) [SwitchOn] <Television> (270) [Find] <Couch> (230)
[Sit] <Couch> (230) [Find] <Remote_Control> (1000) [Grab] <Remote_Control> (1000) [Drop] <Remote_Control> (1000) [TurnTo] <Television> (270) [LookAt] <Television> (270)

[Walk] <Home_Office> (179) [Find] <Television> (270) [PlugIn] <Television> (270)[Walk] <Television> (270) [SwitchOn] <Television> (270) [Find] <Remote_Control> (1000)
[Drop] <Remote_Control> (1000) [Find] <Couch> (230) [Sit] <Couch> (230) [TurnTo] <Television> (270) [LookAt] <Television> (270)

[Watch] <Television> (270)
[Grab] <Remote_Control> (1000)

[Walk] <Home_Office> (179) [Find] <Couch> (230)[Walk] <Couch> (230) [Find] <Television> (270)
[SwitchOn] <Television> (270) [Find] <Remote_Control> (1000) [TurnTo] <Television> (270)

[Sit] <Couch> (230)
[Drop] <Remote_Control> (1000)[PlugIn] <Television> (270) [Grab] <Remote_Control> (1000)

[LookAt] <Television> (270)

[Walk] <Home_Office> (179) [Find] <Television> (270) [PlugIn] <Television> (270)[Walk] <Television> (270) [SwitchOn] <Television> (270) [Find] <Couch> (230)
[TurnTo] <Couch> (230) [Sit] <Couch> (230) [TurnTo] <Couch> (230) [TurnTo] <Television> (270) [Find] <Remote_Control> (1000) [Grab] <Remote_Control> (1000)

[Drop] <Remote_Control> (1000)

[Walk] <Home_Office> (179) [Find] <Remote_Control> (1000)[Sit] <Couch> (230)

[Drop] <Remote_Control> (1000)

[Find] <Couch> (230) [Grab] <Remote_Control> (1000)
[Find] <Television> (270)

[Walk] <Television> (270)
[SwitchOn] <Television> (270)[PlugIn] <Television> (270) [TurnTo] <Television> (270) [LookAt] <Television> (270) [Walk] <Television> (270)

[SwitchOff] <Television> (270) [PutObjBack] <Remote_Control> (1000) [Walk] <Television> (270) [SwitchOn] <Television> (270) [TurnTo] <Television> (270)

[Walk] <Dinning_Room> (49) [Find] <Faucet> (130) [SwitchOn] <Faucet> (130)[Walk] <Sink> (129) [Walk] <Home_Office> (179) [Walk] <Television> (270)
[Find] <Television> (270) [PlugIn] <Television> (270) [SwitchOn] <Television> (270) [Sit] <Couch> (230) [Find] <Remote_Control> (1000) [Grab] <Remote_Control> (1000)

[Drop] <Remote_Control> (1000) [TurnTo] <Television> (270) [LookAt] <Television> (270)

Generation matched with GT

[Walk] <Television> (270)

ZP-S (GPT-4) [Walk] <Home_Office> (179) [Find] <Couch> (230)[Walk] <Couch> (230) [PlugIn] <Television> (270)
[Find] <Remote_Control> (1000) [Grab] <Remote_Control> (1000) [TurnTo] <Television> (270)

[Sit] <Couch> (230)
[Drop] <Remote_Control> (1000)[SwitchOn] <Television> (270)

[Watch] <Television> (270)

[Find] <Television> (270)
[LookAt] <Television> (270)

[LookAt] <Television> (270)

Fig. 8. Qualitative comparison with rationality-oriented program generation methods.

encoding dynamic changes of the scene to improve the executabil-
ity of the programs, we categorize related works into two types:
rationality-oriented approaches that generate programs in a textual
sequence-to-sequence manner to improve rationality but lack con-
sideration of the target scene where the activity should be executed,
and executability-oriented approaches that condition the activity
program generation on the target scene to improve executability.

Comparison to rationality-oriented approaches. We first compare
to a set of baselines that consider activity program generation purely
as a natural language processing problem and generate the activity
program using supervised learning or help from a pre-trained lan-
guage model. Once the program is generated, we need to create a
mapping from the object category in each instruction to an object
instance inside the scene. We use the same simple mapping strategy
as VirtualHome [Puig et al. 2018], which randomly maps an object
category to the object instance in the scene with the same category.
The program is not executable if there is no object instance that can
be mapped to in the scene.
We compare to the following two baselines of this type:

• VirtualHome (GRU) [Puig et al. 2018], VH (GRU) for short, which
encodes the input description with an RNN encoder and uses an-
other RNN as the decoder to generate one instruction at a time. To
adapt VH to our problem, we transform the scene graph into text
and place it before the description in the input. Then, we use the
GRU in our implementation and train this baseline with our dataset.
To improve the rationality, we also enhance the method by replacing
the GRU with GPT-2 [Radford et al. 2019] as in our method, and
fine-tune on the dataset. This new variant is denoted as VH (GPT-2).

Table 1. Quantitative comparisons with rationality-oriented approaches.

Rationality LCS Executability Completeness

VH (GRU) 0.123 0.096 0.332 0.020
VH (GPT-2) 0.334 0.324 0.385 0.257
ZP (GPT-3) 0.421 0.391 0.307 0.128
ZP-S (GPT-3) 0.435 0.419 0.334 0.226
ZP-S (GPT-4) 0.436 0.389 0.577 0.442

Ours 0.438 0.515 0.746 0.584

• Zero-shot planner (GPT-3) [Huang et al. 2022], ZP (GPT-3) for
short, with the input adapted to our problem setting, which uses
a pre-trained causal large language model (LLM) GPT-3 [Brown
et al. 2020] to generate the program by taking an example program
corresponding to a similar activity description as input. Note that
the direct output of the LLM is a set of natural language sentences,
which are then converted into instructions based on heuristics. This
baseline adopts zero-shot learning and there is no supervision pro-
vided by our training set. To make this baseline more scene-aware,
we also construct a new prompt with the specific scene information
inspired by [Singh et al. 2022], and denote the enhanced variant as
ZP-S (GPT-3). The prompt construction details can be found in the
supplementary material. Since the prompt with scene information
is quite long, to be able to better utilize the contextual scene infor-
mation for program generation, we test another baseline where we
further enhance the scene-aware baseline with the latest released
LLM GPT-4 [OpenAI 2023], denoted as ZP-S (GPT-4).

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.



Scene-aware Activity Program Generation with Language Guidance • 9

RAG (Two, GRU)

RAG (Two, GPT2)

GT

Activity Sketch :

[Walk] <Home_Office> (179) [Walk] <Light> (267)

[SwitchOn] <Light> [Sit] <Chair> [Lie] <Bed> [Read] <Book>

[Find] <Light> (267) [PlugIn] <Light> (267) [SwitchOn] <Light> (267) [Walk] <Book> (1000)
[Find] <Book> (1000) [Grab] <Book> (1000) [Walk] <Light> (267) [Lie] <Light> (267)
[Read] <Book> (1000)

[Find] <Chair> (227) [Sit] <Chair> (227)

Activity Sketch :

[Walk] <Home_Office> (179) [Walk] <Light> (267)

[SwitchOn] <Light> [Sit] <Chair> [Read] <Book>

[Find] <Light> (267) [PlugIn] <Light> (267) [SwitchOn] <Light> (267) [Sit] <Light> (267)
[Find] <Book> (1000) [Grab] <Book> (1000) [Read] <Book> (1000)[Find] <Chair> (227) [Sit] <Chair> (227) [StandUp]

RAG (One, GRU) [Walk] <Home_Office> (179) [Walk] <Light> (267) [Find] <Light> (267) [PlugIn] <Light> (267)
[SwitchOn] <Light> (267) [Find] <Book> (1000) [Grab] <Book> (1000)

[Read] <Book> (1000)

[Find] <Chair> (227) [Sit] <Chair> (227)
[TurnTo] <Light> (267) [LookAt] <Light> (267)

[Find] <Chair> (301)

[Sit] <Chair> (301) [Find] <Book> (1000) [Grab] <Book> (1000)

Ours [Walk] <Home_Office> (179) [Walk] <Light> (267) [Find] <Light> (267) [PlugIn] <Light> (267) [SwitchOn] <Light> (267) [Find] <Book> (1000)
[Grab] <Book> (1000) [Find] <Chair> (227) [Sit] <Chair> (227) [Read] <Book> (1000)

[Walk] <Home_Office> (179) [Walk] <Light> (267) [Find] <Light> (267) [PlugIn] <Light> (267) [SwitchOn] <Light> (267) [Find] <Book> (1000)
[Grab] <Book> (1000) [Find] <Chair> (227) [Sit] <Chair> (227) [Read] <Book> (1000)

Activity Sketch : [SwitchOn] <Light> [Sit] <Chair> [Read] <Book>

Description : Walk to home office, turn on light, grab a book, sit in chair, start to read the book.

Scene : Light (267) is unplugged and off. Book(1000), Light(267), and Chiar (227) are in home_office (179). Chair (301) is in the bedroom (276).

Activity: Read Book
Generation unmatched 

Generation not executable
GT missing in the generation

Generation matched with GT

Fig. 9. Qualitative comparison with executability-oriented program generation methods.

Table 1 shows the quantitative comparison results. We see that the
two variants of the ZP baseline have high Rationality, indicating that
they can generate rational programs that contain the necessary steps
to complete the tasks at the semantic level. However, they cannot
achieve good Executability and Completeness, mainly because these
methods do not effectively utilize the scene information presented
in the form of text. On the other hand, our method provides the
highest Rationality, LCS, Executability, and Completeness among
all the baselines, given its scene-aware program generation.

An example of a qualitative comparison is shown in Figure 8. For
the results generated by each method, instructions matched with
the GT are put in green boxes, while instructions in the GT but not
predicted by the method are put in white boxes with dashed borders.
All the remaining unmatched instructions are put in gray boxes.
Moreover, a red border is added to each instruction that is not exe-
cutable in the current scene, no matter whether it is matched with
the GT or not, as the executability of an instruction also depends
on the current states of the agent and the involved objects. For the
activity “Watch TV”, an instruction “plug in television” is required
to adapt to the scene where the television is unplugged. The VH
(GRU) method generates many irrelevant instructions mainly due
to overfitting. The VH (GPT-2) method alleviates the overfitting
problem with a pre-trained model, but still does not generate the
instruction for adapting to the scene. The ZP (GPT-3) method di-
rectly translates the description into a program and also does not
generate the instruction “plug in television”. Moreover, ZP (GPT-3)
duplicates several instructions at the end, as the language model has
a preference to repeat the previous sentences [Xu et al. 2022]. While
the ZP-S (GPT-3) and ZP-S (GPT-4) methods successfully predict
the “plug in television” step by making use of the scene information
provided in text form, they fail to generate an executable program.
For ZP-S (GPT-3), an instruction “walk television” is predicted when

Table 2. Quantitative comparisons with executability-oriented baselines,
including three variants of RAG [Liao et al. 2019].

Rationality LCS Executability Completeness

RAG (Two, GRU) 0.305 0.377 0.529 0.350
RAG (Two, GPT-2) 0.327 0.343 0.472 0.322
RAG (One, GRU) 0.348 0.400 0.481 0.339

Ours 0.438 0.515 0.746 0.584

the state of the human agent is “sitting” after the execution of the
instruction “sit chair”, as the dynamic change of agent and scene
states are not captured by the model. Similarly, for ZP-S (GPT-4),
an instruction “turn to television” should be predicted first to make
the human agent “face at” the television before the execution of the
instruction “watch television”. Compared to ZP-S (GPT-3) and ZP-S
(GPT-4), our method successfully generates an executable program
to complete the required activity, with the final state of the scene
after the program execution being the same as when executing the
GT program. This example also shows that there are multiple ways
to complete a given activity in a given scene, which explains why
our method has high executability and completeness but relatively
low LCS in this example.

Comparison to executability-oriented approaches. We also compare
to the other set of baselines that specifically take the scene into
consideration and directly generate activity programs associated to
scene instances. All the baselines are variants of the most related
work [Liao et al. 2019], which we refer to as RAG. RAG [Liao et al.
2019] adopts a two-stage framework, which first transforms the
input description into an activity sketch with a GRU, and then
generates the complete program in the given scene with another
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Description : Take a dish and put it in the dishwasher to be washed.

W
as

h 
di

sh
es

KitchenWalk Walk

PlateGrab

DetergentGrab DishwasherWalk DishwasherOpen PutIn Detergent Dishwasher

Walk PutIn Plate Dishwasher DishwasherClose DishwasherSwitchOn

Detergent

DetergentPlateFind

Description : Robot drinks the water.

D
rin

k

KitchenWalk FridgeWalk Find GlassGrabFridgeOpen GlassDrinkGlass

Description : Turn tv on, and then watch tv from sofa.

W
at

ch
 T

V

LivingRoomWalk TVWalk SwitchOn TV SofaWalk SofaSit LookAt TV

Description : Enter inside kid's room, begin picking up toys from the floor and putting them in a toy box.

C
le

an

BedroomWalk ToyGrab CabinetWalk CabinetOpen CabinetClosePutIn Toy Cabinet

Description : Walk into office, sit in chair, turn on computer, write email.

W
rit

e 
em

ai
l

Living RoomWalk ComputerWalk SwitchOn Computer ChairWalk ChairSit LookAt Computer

Description : I walk in the kitchen, I open the fridge and remove the chicken. I grab frying fan and put it on stove. I put chicken in the frying pan and I cook food.

C
oo

k 
so

m
e 

fo
od

KitchenWalk FridgeWalk FridgeOpen ChickenFind ChickenGrab FridgeClose

PotWalk PotFind PotGrab PutBack StoveChickenStoveWalk PutBack StovePot

Fig. 10. Keyframes of several example animation sequences automatically generated from our results using the simulator of VirtualHome [Puig et al. 2018].
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GRU based on the sketch. The key limitation of this method are
the inconsistencies generated by the two-stage framework, where
imperfect sketches are predicted at the first stage and then fed to
the program generation stage trained on ground truth sketches,
generating programs with errors. To alleviate this problem, we
implement an improved version of this baseline by replacing the
GRU network with GPT-2. We denote the two baselines as RAG (Two,
GRU) and RAG (Two, GPT-2) according to the backbone used in the
first stage, and implement another baseline that directly transforms
the description into a program with a GRU without an activity
sketch, and denote it as RAG (One, GRU). Note that the setting with
a one-stage framework based on GPT-2 is similar to our framework,
and thus we also include it in the more detailed ablation study on
language guidance in the supplementary material.
Table 2 shows the quantitative comparison results. We can see

that these methods have relatively low Rationality, and our method
again performs consistently better than the three baselines in terms
of all metrics. The inconsistency problem is alleviated by the im-
proved RAG (Two, GPT-2) and RAG (One, GRU). Thus, these baselines
perform better than the original RAG (Two, GRU) baseline.

One example of a qualitative comparison is shown in Figure 9. An
action “sit chair” should be predicted to complete the task expressed
by the activity description, and the “chair” object specified for sitting
should be the one in the home office. Due to the limited ability of
the GRU, the RAG (Two, GRU) baseline fails to predict the sitting
step in the sketch, and thus does not add it to the complete program.
By introducing a pre-trained language model, the RAG (Two, GPT-
2) baseline successfully predicts this step in the sketch, but still
fails to add it to the complete program. Although the RAG (One,
GRU) baseline successfully predicts the step of sitting on a chair, it
selects an inaccessible chair in the bedroom to sit on, as the human
agent has entered the home office in the first instruction. Since
we generate the program with language guidance and adjacency
constraints of the human agent, our method successfully predicts
the “sit chair” instruction in terms of semantics, and chooses the
right chair instance inside the home office to sit on.

5.3 Activity demonstration
Once the complete activity program is constructed, we can further
generate an animation of the human agent executing the activity
program in the given scene with the simulator provided by Vir-
tualHome [Puig et al. 2018]. Specifically, the animations of the 12
most frequent atomic actions, such as walk, grab, and open, are pre-
defined in the simulator, and Unity’s NavMesh framework is used
for path planning and navigation. Figure 10 shows some keyframes
of several automatically-generated animation sequences. It is inter-
esting to note how the activity is decomposed into actions of the
human agent that are executable in the given scene, although there
are some visual artifacts in the pre-defined atomic actions. More
demonstrations can be found in the supplementary video.

5.4 Ablation Study
To examine the effectiveness of our design, we conduct a detailed
ablation study on the key components of our method, including
using category information and a pre-trained language model (PLM)

Table 3. Ablation study on key components of our method.

AC DU LG Rationality LCS Executability Completeness

0.348 0.400 0.481 0.339
✓ 0.391 0.451 0.600 0.455

✓ 0.360 0.425 0.691 0.498
✓ 0.346 0.423 0.604 0.423
✓ ✓ 0.352 0.422 0.680 0.505
✓ ✓ ✓ 0.438 0.515 0.746 0.584

for language guidance (LG), considering the human agent’s position
for adjacency constraints (AC), and adopting the memory-driven
dynamic graph update (DU). The baseline model only utilizes the
instance-based graph feature 𝐹𝑔𝑡 to predict the graph-guided proba-
bility 𝑃

𝑔
𝑡 , without any help from our key components. The results

are summarized in Table 3.
We can see that all the key components solely improve the perfor-

mance, and the performance consistently increases by stacking the
key components. We find that LG mainly improves the Rationality
and LCSmetrics, while DU and ACmainly improve the Executability
and thus Completeness metrics.
We show qualitative ablation results in Figure 11. The first, sec-

ond, and third rows are the qualitative ablation results obtained
when adding the different key components to our method, i.e., AC,
LG, and DU, respectively. The first row shows an example of quali-
tative ablation on the adjacency constraint (AC). As described in the
activity description, the target program is related to the object “sofa”
in the living room. Due to the lack of consideration of adjacency of
the human agent node, the baseline predicts the instructions that
involve an irrelevant and inaccessible object “book” in the bedroom,
as the human agent has entered the home office in the first instruc-
tion, while our method focuses on the relevant objects in the home
office when using the adjacency constraint. The second row shows
an example of qualitative ablation on language guidance (LG). As
described in the activity description, instructions related to the ob-
ject “keyboard” should be predicted in the program to complete the
task described in the description. Due to the absence of semantic
information, the baseline fails to predict these instructions in the
program, while ourmethodwith LG successfully predicts these steps
and generates a more rational program with the help of language
guidance. The third row shows an example of qualitative ablation on
the dynamic graph update (DU), where the ground truth program of
the activity is composed of a series of instructions involving three
nearby objects. The baseline predicts many unmatched instructions
with irrelevant objects. In contrast, the method with DU is able to
generate a more rational program, since the activity-aware spatial
relationship among the nodes is explicitly captured in the dynamic
graph update.We also present a more detailed analysis on the impact
of each module on executability in the supplementary material.

5.5 Generality to different inputs
Generality to different activity specification formats. The activity

description in the dataset is a scene-associated description that is im-
plicitly conditioned on the environment. To validate the robustness
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GT

Baseline [Walk] <Home_Office> (179) [Walk] <Book> (2009) [Grab] <Book> (2009)

[Sit] <Couch> (230)

[Find] <Couch> (230)

(w/ AC) [Walk] <Home_Office> (179) [Walk] <Couch> (230) [Find] <Couch> (230) [Sit] <Couch> (230)

[Find] <Book> (2009)

[Read] <Book> (2009)

[Walk] <Home_Office> (179) [Walk] <Couch> (230) [Find] <Couch> (230) [Sit] <Couch> (230)

[Walk] <Couch> (230)

Description : I Walk to the living room and find the sofa. I sit on the sofa and get comfortable.

Scene : Book(2009) is in Bedroom (276). Couch(230) is in Home_Office (179).

Activity: Relax on Sofa
Generation unmatched 

Generation not executable
GT missing in the generation

Generation matched with GT

GT

Baseline [Walk] <Home_Office> (179) [Walk] <Computer> (264) [Find] <Chair> (227) [LookAt] <Computer> (264)[Sit] <Chair> (227)

(w/ LG) [Find] <Computer> (264) [Find] <Chair> (227) [Sit] <Chair> (227) [TurnTo] <Computer> (264) [LookAt] <Computer> (264) [TurnTo] <Chair> (227)

[LookAt] <Chair> (227) [Find] <Keyboard> (266)

[TurnTo] <Computer> (264)

[TurnTo] <Chair> (227) [LookAt] <Chair> (227) [Find] <Keyboard> (266) [Type] <Keyboard> (266)

[Type] <Keyboard> (266)

[Find] <Computer> (264) [Find] <Chair> (227) [Sit] <Chair> (227) [TurnTo] <Chair> (227) [LookAt] <Chair> (227)[TurnTo] <Chair> (227) [LookAt] <Chair> (227) [Find] <Keyboard> (266)

[Type] <Keyboard> (266)

Description : Find Computer and sit in the chair in front of it. Switch on the computer. Look at it and browse typing addresses with th keyboard.

Scene : Computer(264) is on. Keyboard(266) is face at Computer (264). Keybaord(266), Computer(264) and Chiar (227) are close to each other in home_office (179). 

Activity: Browse Internet

GT

Baseline

(w/ DU)

[SwitchOn] <Washing_Machine> (1000)

[Walk] <Dining_Room> (49) [Walk] <Washing_Machine> (1000) [Find] <Washing_Machine> (1000) [Find] <Basket_for_Clothes> (1001) [Find] <Soap> (1002)

[PutBack] <Soap> (1002) <Washing_Machine> (1000)[Grab] <Soap> (1002) [Close] <Washing_Machine> (1002) [PlugIn] <Washing_Machine> (1000)

[Walk] <Dining_Room> (49) [Walk] <Washing_Machine> (1000) [Find] <Washing_Machine> (1000) [Find] <Basket_for_Clothes> (1001) [TurnTo] <Washing_Machine> (1000)

[LookAt] <Washing_Machine> (1000) [Find] <Soap> (1002) [Grab] <Soap> (1002) [PutBack] <Soap> (1002) <Washing_Machine> (1000)

[SwitchOn] <Washing_Machine> (1000)[Close] <Washing_Machine> (1002) [PlugIn] <Washing_Machine> (1000)

[Grab] <Basket_for_Clothes> (1001)

[Walk] <Basket_for_Clothes> (1001) [Find] <Fridge> (146) [Open] <Fridge> (146) [Open] <Basket_for_Clothes> (1001)

[Walk] <Dining_Room> (49) [Walk] <Washing_Machine> (1000) [Find] <Washing_Machine> (1000) [Find] <Basket_for_Clothes> (1001)

[Find] <Soap> (1002)

[Grab] <Soap> (1002) [PutBack] <Soap> (1002) <Washing_Machine> (1000) [Close] <Washing_Machine> (1002)

[PutIn] <Soap> (1002) <Fridge> (146) [Close] <Fridge> (146)

[PlugIn] <Washing_Machine> (1000)

[SwitchOn] <Washing_Machine> (1000)

Description : Put Clothes and soap in the washing machine, turn it on.

Scene : Washine_Machine(1000) is unplugged and off. Basket_for_Clothes(1001), Washine_Machine(1000) and Soap (1002) are close to each other. They and Fridge(146) are in dinning_room(49).

Activity: Wash Clothes

Fig. 11. Qualitative results of ablation on key components of our method: adjacency constraint (AG), language guidance (LG), and dynamic graph update (DU).

Table 4. Generality to different activity specification formats.

Rationality LCS Executability Completeness

SD-SD 0.438 0.515 0.746 0.584
SD-RD 0.359 0.404 0.668 0.459
SD-A 0.387 0.483 0.699 0.524
A-A 0.418 0.484 0.725 0.550

of our method to the format used for specifying the input activity,
we test our method with three different representations of the ac-
tivity specification: the scene-associated description (SD), a random
description (RD), and an activity label (A). SD refers to the descrip-
tion associated with the given input scene in the dataset, which we

used in the previous experiments, RD refers to a description with
the same activity label as the scene description but associated to
another randomly-sampled scene in the dataset, and A refers to a
high-level activity label like “Watch TV”.

Table 4 shows the results of our method trained and then tested
on different specification formats. On the left column, the acronym
before the hyphen indicates the format of the training data, while
the acronym after the hyphen indicates the format of the testing
data. We can see that our method trained on the scene-associated
description (SD) is robust even when the input description of the
test data is replaced by a short activity label (SD-A). The perfor-
mance is also close to the method retrained on the dataset with
activity labels as input (A-A). These results demonstrate that even
though there is no scene-associated information specified by the
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SD-A

SD-SD

SD-RD

A-A

[Walk] <Home_office> (179) [Walk] <Couch> (230) [Find] <Couch> (230) [TurnTo] <Couch> (230) [LookAt] <Couch> (230) [Sit] <Couch> (230)

[Find] <Cat> (1000) [Touch] <Cat> (1000)[TurnTo] <Cat> (1000) [LookAt] <Cat> (1000)

GT

[Walk] <Home_Office> (179)

[Walk] <Cat> (1000) [Find] <Cat> (1000) [Touch] <Cat> (1000)

[Walk] <Couch> (230) [Find] <Couch> (230) [TurnTo] <Couch> (230) [LookAt] <Couch> (230) [Sit] <Couch> (230)

[TurnTo] <Cat> (1000) [LookAt] <Cat> (1000)

[Walk] <Home_Office> (179)

[Walk] <Cat> (1000) [Find] <Cat> (1000) [Touch] <Cat> (1000)[Walk] <Cat> (1000) [TurnTo] <Cat> (1000) [LookAt] <Cat> (1000)

[Walk] <Couch> (230) [Find] <Couch> (230) [TurnTo] <Couch> (230) [LookAt] <Couch> (230) [Sit] <Couch> (230)

[Find] <Cat> (1000) [Touch] <Cat> (1000)[TurnTo] <Cat> (1000) [LookAt] <Cat> (1000)

[Walk] <Home_Office> (179) [Walk] <Couch> (230) [Find] <Couch> (230) [TurnTo] <Couch> (230) [LookAt] <Couch> (230) [Sit] <Couch> (230)

[Find] <Cat> (1000) [Touch] <Cat> (1000)[TurnTo] <Cat> (1000) [LookAt] <Cat> (1000)

[Walk] <Home_Office> (179) [Walk] <Couch> (230) [Find] <Couch> (230) [TurnTo] <Couch> (230) [LookAt] <Couch> (230) [Sit] <Couch> (230)

Random Description : I go to the living room then go to the cat and touch it.

Description : Walk to entrance hall, look at the sofa, sit on the sofa, look at the cat, allow cat to near with you, touch the cat smoothly on its head.

Scene : Couch(230) is close to Cat(1000). Couch(230) and Cat (1000) are in home_office(179).

Activity: Pet Cat
Generation unmatched 

Generation not executable
GT missing in the generation

Generation matched with GT

Fig. 12. Qualitative results showing the generality of our method to different activity specification formats.

RAG (One, GRU) ZP-S (GPT-3) Ours

Activity: Drink
Description : Drinking a glass of water.
Dataset : ScanNet

Walk couch 1
Find couch 2

SwitchOn couch 3
H

H

H
Find chair4
Lie chair5

H
Find tv 6

SwitchOff tv 7

H Open wall8

H

H
Find glass water4

PutObjBack glass water7

Grab glass water5
Drink glass water6

Walk cabinet1
Find cabinet2
Open cabinet3

Close cabinet8H

H

Walk cabinet1
Find cabinet2

Open cabinet3
Find glass water4
Grab glass water5

H Close cabinet6

Walk shelf 7
PutBack glass water 8shelf

Grab glass water 9
Drink glass water 10

Walk living room1H

H

H

Walk sofa2
Find sofa3
Lie sofa4

Sleep5

Activity: Relax on sofa
Description : I walk into the living room and I lie down on the sofa.
Dataset : 3DFront

Walk living room1

H

H

H

Walk ceiling lamp2
Find ceiling lamp3H

Find sofa 4
Lie sofa 5

Sleep 6

Walk living room1H

HWalk nightstand 2

H
Find chair 3
Sit chair 4

H

Fig. 13. Qualitative examples showing the generality of our method to scene inputs from different datasets. The sequences of arrows laid over the top views of
the scenes show the steps of the activity programs and the locations in the scenes where the activities should take place.
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GT

Ours

[Find] <Vacuum> (1000) [Grab] <Vacuum> (1000) [Push] <Vacuum> (1000)[Pull] <Vacuum> (1000)

[PutIn] <Vacuum> (1000) <Dresser> (302)

[Walk] <Dresser> (302)

[PlugOut] <Vacuum> (1000) [Walk] <Dresser> (302) [Close] <Dresser> (302)

[Find] <Vacuum> (1000) [Grab] <Vacuum> (1000) [Pull] <Vacuum> (1000)[SwitchOn] <Vacuum> (1000)[Walk] <Dresser> (302)

[PutIn] <Vacuum> (1000) <Dresser> (302)[SwitchOff] <Vacuum> (1000) [PlugOut] <Vacuum> (1000) [Walk] <Dresser> (302)

[Walk] <Bedroom> (276)

[SwitchOff] <Vacuum> (1000)

[Walk] <Bedroom> (276)

[Close] <Dresser> (302)

[Push] <Vacuum> (1000)

Description : Plug in vacuum. Walk around with vacuum, covering all of the floor. Unplug vacuum.

Scene : Vacuum (1000) is on. Vacuum (1000) and Dresser (302) are in BedRoom (276).

Activity: Vacuum
Generation unmatched 

Generation not executable
GT missing in the generation

Generation matched with GT

GT

Ours

[Find] <Dishwasher> (139) [Find] <Dish Soap> (1000) [Open] <Dishwasher> (139)[Grab] <Dish Soap> (1000)

[PutBack] <Dish Soap> (1000) <Dishwasher> (139) [Find] <Glass> (1001) [Grab] <Glass> (1001) [PutBack] <Glass> (1001) <Dishwasher> (139)

[PutBack] <Fork> (1002) <Dishwasher> (139) [Find] <Knife> (1003) [Grab] <Knife> (1003)

[PutBack] <Knife> (1003) <Dishwasher> (139) [Find] <Plate> (1004) [Grab] <Plate> (1004) [PutBack] <Plate> (1004) <Dishwasher> (139)

[Find] <Dishwasher> (139) [Open] <Dishwasher> (139) [Grab] <Plate> (1004)[Find] <Plate> (1004)

[PutBack] <Plate> (1004) <Dishwasher> (139) [Find] <Knife> (1003) [Grab] <Knife> (1003) [PutBack] <Knife> (1003) <Dishwasher> (139)

[PutBack] <Fork> (1002) <Dishwasher> (139) [Find] <Dish Soap> (1000) [Grab] <Dish Soap> (1000)

[PutBack] <Dish Soap> (1000) <Dishwasher> (139) [Find] <Glass> (1001) [Grab] <Glass> (1001) [PutBack] <Glass> (1001) <Dishwasher> (139)

[Walk] <Dinning_Room> (49)

[Find] <Fork> (1002)

[Close] <Dishwasher> (139)

[Walk] <Dinning_Room> (49)

[Find] <Fork> (1002)

[Close] <Dishwasher> (139)

[Walk] <Dishwasher> (139)

[Grab] <Fork> (1002)

[SwitchOn] <Dishwasher> (139)

[Walk] <Dishwasher> (139)

[Grab] <Fork> (1002)

[SwitchOn] <Dishwasher> (139)

Description : Walk to the kitchen and turn to the dishwasher, put the knife, glass, fork and plate into the dishwasher. Turn on the dishwasher.

Scene : Dishwasher (139) is closed and off. Dishwasher (139), Dish_Soap (1000), Glass (1001), Fork (1002), Knife (1003) and Plate (1004) are in Dinning_Room (49).

Activity: Wash dishes with dishwasher

Fig. 14. Failure cases of our method. Top row: the state of the vacuum is not taken into account. Bottom row: not all objects are added to the dishwasher.

activity description, our model is still able to adapt to a new scene
and generate a program based only on an activity label. The testing
results on the random description (RD) are the worst, since the ran-
dom description provides a specific way of performing the required
activity which may contain steps inconsistent with the given scene.
One example of a qualitative comparison is shown in Figure 12.

Instructions related to the object “couch” should be predicted so
that the task can be completed. Since the random description does
not mention “couch”, our model with a random description as input
fails to predict the couch-related instruction steps. Similarly, our
model with an activity label also fails to predict these steps, but
successfully predicts other correct steps based only on the activity
label. Our model retrained on the dataset with activity label as input
can predict most of the steps, which is close to the performance of
the model with a scene-associated description as input.

Generality to different scene inputs. To evaluate the generality of
our approach to different scene datasets, we tested our method on
the ScanNet [Dai et al. 2017] and 3DFront [Fu et al. 2021] datasets. To
be able to test our method on these datasets, we constructed scene
graphs for the scenes in these datasets in the VirtualHome format.
Specifically, since our method is trained on fixed object categories
from VirtualHome, which cover most of the household object cate-
gories, we first map the objects of other datasets to VirtualHome’s
nodes according to the semantic similarity of the object categories.
Then, we compute the spatial relationships between objects based
on their bounding boxes. Qualitative results are shown in Figure 13.

Since the scenes from these two datasets are relatively different
from those of VirtualHome, the purely graph-based approach RAG
(One, GRU) exhibits poor generalization and fails to generate reason-
able programs even for simple activities. ZP-S (GPT-3) based on a
large language model cannot properly consider the scenes and thus
tends to generate irrelevant intermediate steps in the programs. Our
approach can accurately generate programs for these new scenes,
exhibiting better generalizability.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK
In this work, we propose a novel algorithm to achieve automatic
scene-aware activity program generation. Our algorithm outper-
forms the past approaches in both rationality and executability,
thanks to the design of the method which extracts semantic infor-
mation from a pre-trained language model and deploys an explicit
perception of the target scene via a scene graph.
Since our method is trained end-to-end with data entries in the

form <activity, program>, it works well on the seen activities, and
also generalizes well to test cases that include the same activities
with different descriptions, which correspond to the test set in the
VirtualHome-Env dataset. However, our method is not guaranteed
to generate rational programs for activities never seen before. Al-
though the language model has good generalization capability to
unseen text, it is deployed in our method more as a feature extractor
which does not directly determine the generated instructions.

Moreover, Figure 14 shows example results that represent the
main failure modes of our method, where our method either gener-
ates redundant instructions that are not matched to an object state
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or misses some key instructions when too many objects are involved
in the activity.

For the activity “Vacuum” shown in the first row of the figure, the
vacuum is given in “on” state and thus does not need to be “switched
on” in the GT program. However, since we use all kinds of global and
local information to guide the program generation and most of the
GT programs in the dataset contain the “switch on the vacuum” step,
our method sometimes fails to generate the appropriate program
relative to the current object state and generates the redundant
“switch on” step in this case, which leads to the the program not
being executable. It would be interesting to explore ways to make
the program generation process give more importance to the object
state to further improve the executability of the programs.
For the activity “Wash dishes with dishwasher” shown in the

second row, as many objects need to be grabbed and put into the
dishwasher, our method successfully completes the task for all the
objects other than the “Glass”. One future direction is to find a
better encoding of the activity description to ensure that our method
generates programs that cover all the objects that are mentioned in
the description or should be involved when completing an activity.
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