
Image Smoothing via Unsupervised Learning
Supplemental Material

1 Detection of the salient edge points

Our edge detector works by selecting edge points as described
in Algorithm 1 and then filtering noisy edges with Algorithm
2.

To be specific, we select the salient edge points whose in-
tensity is relatively larger than most of its nearby points. Such
a design is based on the observation that what makes a point
salient is its relative intensity compared to its local neighbour-
hood, instead of its absolute intensity. Because of this simple
strategy, we are able to extract the points that may be weak in
absolute value, but noticeable among its nearby points.

We further filter the noisy edge points by considering its
neighbourhood connectivity. This is based on the principle
that an edge is usually composed of lines or curves, thus an
edge point should be connected with others to form some
shape of lines. To implement this process, given a selected
edge point, we iterate over 4 directions (horizontal, vertical
and diagonal) to seek the connection with its neighbourhood.
And if the current point fails to be related with enough points
in all the directions, we decide to remove this candidate point.

Note that two examples of our detected edge maps B are
demonstrated in the application section of image abstraction
of the main paper. They conform with the image structures of
the smoothed images produced by our network.

2 Detection of the texture image structures

Our texture extraction method is based on an important obser-
vation that the most common texture structures usually share
similar colors on its two sides, such as those many texture
images shown in the main paper and supplemental material.
Therefore, we simply designed our texture detection method
as following three steps.

• Calculate the edge direction of the current point.
• Select two points on the perpendicular direction of cur-

rent edge direction.
• Set current point as texture point if the above two points

share similar colors.

The degree of edge direction can be calculated by computing
the arc tangent of the y and x image gradient [5]. Note a few
examples of detected texture structures are further filtered with
Algorithm 2 and shown in the application section of texture
removal of the main paper.

Note we don’t argue for the optimal performance of the
salient edge detection and texture extraction tasks, since which
are not the focus of this paper. Moreover these tasks are very
subjective, we believe the ideal solution should be manual la-
beling training images according to user preference, however
such an edge-labeling work is prohibitively labor-intensive to
be conducted with limited human resource. Hence we adopt

Algorithm 1 Edge selection for salient image points
1: procedure EDGESELECTION(E(I))
2: Initialize:

t1 = 25, t2 = 20, t3 = 200, w = 21
3: for Ei(I) ∈ E(I) do
4: Bi = 0
5: if Ei(I) > t1 then
6: count = 0
7: for Ej(I) ∈ Nw(Ei(I)) do
8: if Ei(I)− Ej(I) > t2 then
9: count++

10: if count > t3 then
11: Bi = 1

12: return B

Algorithm 2 Edge filtering based on neighbour connectivity
1: procedure EDGEFILTERING(B(I))
2: Initialize:

t1 = 51, t2 = 20
3: for Bi ∈ B do
4: if Bi == 1 then
5: failureNum = 0
6: repeat
7: count = 0
8: for j = i+ 1 to i+ t1 do
9: if Bj == 1 then

10: count++
11: else
12: break
13: if count < t2 then
14: failureNum++
15: until Iterate over 4 directions . x, y, diagonal
16: if failureNum == 4 then
17: Bi = 0

18: return B

these two simple algorithms to deal with it automatically, and
find they work well enough for the majority of natural images.
We believe more sophisticated and advanced approaches can
be leveraged to obtain potentially better results.

3 Energy Minimization with Deep Learning

Our proposed whole objective function is very complex; it is
highly non-convex and difficult to optimize. In this paper, we
propose to use a deep learning technique to optimize it. A
deep network can run very fast with the aid of modern GPUs,
facilitating real-time interaction with users. Moreover, as a
data-driven approach, deep networks can leverage a large vol-
ume of natural images for learning to optimize the complex
energy function.

1

loss L2 ratio

Figure 1: Illustration of the loss curve and L2 ratio curve of the deep learning solver along the training procedure.

Specifically, we train a deep convolutional neural network
which takes as input the raw images and produces smoothed
images. In this section, we present how the energy function
can be minimized using back-propagation in a neural work.

We implement the energy function as three differentiable
loss layers in the deep learning framework to enable back-
propagation for network training. Implementing the data term
is relatively easy: the loss is the mean squared difference be-
tween the output image T predicted the input image I , and the
derivate is simply

∂Ed
∂Ti

=
2

N
· (Ti − Ii). (1)

Note that the gradient is computed for each channel of T . We
omit the channel index here and hereafter for brevity.

The flattening term calculates the weighted sum of the Lp

norm difference between each pixel and its neighbouring pix-
els in the output image T , which is very resource-intensive.
To tackle this challenge, we compute the corresponding loss
in parallel for all the points in the image using GPU. When
calculating the derivative of this loss with respect to each point
i in T , we need to consider not only the loss it induced as the
center pixel of the local window Nh(i), but also the loss it
contributed as the neighbourhood of other pixels in their local
windows. The complete derivate can be written as

∂Ef
∂Ti

=
1

N

∑
j∈Nh(i)

(wi,j · gi,j − wj,i · gj,i), (2)

where

gi,j = pi · |Ti − Tj |pi−1 · sign(Ti − Tj), (3)

and gj,i can be computed accordingly. The edge-preserving
term computes the mean squared differences of guidance im-
age values on selected important edge points. The correspond-

ing back propagation can be derived as

∂Ee
∂Ei(T)

=
2

Ne
·Bi · (Ei(T)− Ei(I)). (4)

According to the chain rule, the gradients backpropagated to
the smooth image are

∂Ee
∂Ti

=
∑

j∈N (i)

sign(
∑
c

(Ti,c − Tj,c)) · (
∂Ee

∂Ei(T)
+

∂Ee
∂Ej(T)

)

(5)
Since our neural network only uses above the training sig-

nals, it does not require any ground truth images except for
possibly some selected edge points in the edge-preserving
term. The deep network is learned in an unsupervised (or pos-
sibly weakly-supervised) fashion.

4 Convergence of deep learning solver on our
objective function

To explore the convergence of our algorithm optimized over
the dynamic objective function, we show the training and test
loss curve along the optimization process of the deep network
in Figure 1. Along the 30 training epoches, we observe the
convergence of the deep neural network, even if the energy is
not guaranteed to decrease as the optimized objective function
is continuously changing.

We also calculate the L2 ratio as the rate of the area cov-
ered by L2 norm to the entire image in Figure 1, whose trend
is in accordance to the loss curve. The L2 norm ratio is aver-
aged among the whole training and testing datasets, which can
be considered as a hyper-parameter that indicates the amount
of potentially over-sharpened regions covered by L2 norm
among the entire dataset. It is observed that the ratio curve
converges and becomes stable in the end instead of keeping
fluctuating along the whole training process.

2

In a more general and bigger sense, the above two curves
demonstrate that the deep neural network learns an implicit
combination of L2 and L0.8 norm from the large corpus of
training data.

5 Detailed network structure

A detailed network structure of the proposed network is shown
in the above table. The source codes of our network imple-
mentation as well as the trained models will be released upon
publication.

6 Effect of different Lp norms

One critical factor influencing the smoothness in the basic cri-
terion is the choice of p for the Lp norm in Ef . Applying
an Lp norm with p ≤ 1 promotes sparse solutions assum-
ing Laplacian or hyper-Laplacian distributions. Larger p with
1 < p < 2 steers the assumption towards Gaussian distribu-
tion (p = 2). The effects of different p values are illustrated in
Figure 2, where the results are obtained by minimizing Equa-
tion 1 in the main paper. Here we observe that using a small
p (0 < p < 1) flattens many image regions while preserving
sharp edges (e.g. the rope the climber is holding). However,
it also tends to generate stair-casing artifacts within moder-
ately smooth regions by segmenting them into regions sepa-
rated by spurious edges (see the regions around the climber
with smooth gradation). In contrast, using a large p (e.g.,
p = 2) blurs the image and wipes out more edges (e.g., the
rope disappears and boundaries between objects become less
clear). Discussions about the Lp-norm regularization can also
be found in [9, 4, 1].

Many variants of the basic criterion have been introduced
to achieve different smoothing effects [6, 8, 10, 12, 13, 2].
One property shared by these previous works is that there is
one single, fixed regularization across the whole image in their
smoothing terms. However, as mentioned previously using a
single regularization (i.e. choice of p) can result in obvious
artifacts. It may either over-sharpen the moderately smooth
regions and give rise to spurious edges (with a small p), or
miss some important slender edges (with a large p). An ideal
algorithm would both preserve the structures of interest and
avoid generating spurious edges.

On the other hand, in distinct image smoothing tasks the
image structure of interest may differ. For instance, tex-
ture smoothing aims at diminishing high-contrast small-scale
edges, while traditional edge-preserving image smoothing
methods which are based only on difference of brightness val-
ues tend to keep them. It is difficult to incorporate all the dif-
ferent smoothing effects into a single framework with a uni-
form regularizer.

Based on the above observations, we believe that a reason-
able combination of different Lp norms over image regions
characterising distinct degrees of smoothness is highly desir-
able, which motivates the design of our spatially-variant Lp

flattening criterion. Such a combination should not only avoid
the side-effects induced by a single regularization, but also fa-
cilitate different smoothing effects.

7 More visual comparison with state-of-the-art
approaches

In Figure 3, we demonstrate one more example to compare
our proposed algorithm with the previous state-of-the-art ap-
proaches, as a complement to Figure 2 in the main paper.

8 More visual results

In this section, we present the qualitative results on more than
100 images across multiple applications. Specifically,

• Figure 4 and 5 demonstrates 18 pairs of edge-preserving
smoothing results.

• Figure 6, 7, 8, 9 and 10 shows 28 groups of edge-
preserving smoothing results accompanied with its im-
age abstraction effects.

• Figure 11, 12, 13, 14, 15, 16 and 17 displays 26 groups
of detail magnification results.

• Figure 18 and 19 exhibit 20 pairs of texture removal
results.

• Figure 20, 21, 22, 23 and 24 shows 24 groups of content-
aware image manipulation results.

3

Table 1: The detailed network structure of the proposed network in Figure 7 of the main paper. “conv”, “bat”, “deconv”,“relu”
represent convolution layer, batch normalization layer, deconvolution layer and ReLU activation respectively. each “residual
block” consists of two convolution layers, both followed by batch normalization, the first of which is further followed by ReLU.

Name Kernel Stride Dilation. Ch I/O InpRes OutRes
conv1 + bat + relu 3×3 1 1 3/64 448×448 448×448
conv2 + bat + relu 3×3 1 1 64/64 448×448 448×448
conv3 + bat + relu 3×3 2 1 64/64 448×448 224×224
residual block1 3×3 1 2 64/64 224×224 224×224
residual block2 3×3 1 2 64/64 224×224 224×224
residual block3 3×3 1 4 64/64 224×224 224×224
residual block4 3×3 1 4 64/64 224×224 224×224
residual block5 3×3 1 8 64/64 224×224 224×224
residual block6 3×3 1 8 64/64 224×224 224×224
residual block7 3×3 1 16 64/64 224×224 224×224
residual block8 3×3 1 16 64/64 224×224 224×224
residual block9 3×3 1 1 64/64 224×224 224×224
residual block10 3×3 1 1 64/64 224×224 224×224
deconv4 + bat + relu 4×4 2 1 64/64 224×224 448×448
conv5 + bat + relu 3×3 1 1 64/64 448×448 448×448
conv6 3×3 1 1 64/3 448×448 448×448

References

[1] F. Bach, R. Jenatton, J. Mairal, G. Obozinski, et al. Struc-
tured sparsity through convex optimization. Statistical
Science, 27(4):450–468, 2012. 3

[2] S. Bi, X. Han, and Y. Yu. An L1 image transform for
edge-preserving smoothing and scene-level intrinsic de-
composition. ACM Transactions on Graphics (TOG),
34(4):78, 2015. 3, 5

[3] H. Cho, H. Lee, H. Kang, and S. Lee. Bilateral tex-
ture filtering. ACM Transactions on Graphics (TOG),
33(4):128, 2014. 5

[4] G. Chung and L. A. Vese. Image segmentation using a
multilayer level-set approach. Computing and visualiza-
tion in science, 12(6):267–285, 2009. 3

[5] Q. Fan, F. Zhong, D. Lischinski, D. Cohen-Or, and
B. Chen. Jumpcut: non-successive mask transfer and
interpolation for video cutout. ACM Trans. Graph.,
34(6):195, 2015. 1

[6] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski.
Edge-preserving decompositions for multi-scale tone
and detail manipulation. ACM Transactions on Graphics
(TOG), 27(3), 2008. 3, 5

[7] B. Ham, M. Cho, and J. Ponce. Robust image filtering
using joint static and dynamic guidance. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4823–4831, 2015. 5

[8] D. Min, S. Choi, J. Lu, B. Ham, K. Sohn, and M. N.
Do. Fast global image smoothing based on weighted

least squares. IEEE Transactions on Image Processing,
23(12):5638–5653, 2014. 3, 5

[9] V. S. Prasath, D. Vorotnikov, R. Pelapur, S. Jose,
G. Seetharaman, and K. Palaniappan. Multiscale
tikhonov-total variation image restoration using spatially
varying edge coherence exponent. IEEE Transactions on
Image Processing, 24(12):5220–5235, 2015. 3

[10] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total
variation based noise removal algorithms. Physica D:
Nonlinear Phenomena, 60(1-4):259–268, 1992. 3

[11] C. Tomasi. Bilateral filtering for gray and color images.
In Computer Vision, 1998. Sixth International Confer-
ence on, pages 839–846. IEEE, 1998. 5

[12] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via L0

gradient minimization. In ACM Transactions on Graph-
ics (TOG), volume 30, page 174, 2011. 3, 5

[13] L. Xu, Q. Yan, Y. Xia, and J. Jia. Structure extraction
from texture via natural variation measure. ACM Trans-
actions on Graphics (TOG), 2012. 3, 5

[14] F. Zhang, L. Dai, S. Xiang, and X. Zhang. Segment graph
based image filtering: fast structure-preserving smooth-
ing. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 361–369, 2015. 5

[15] Q. Zhang, X. Shen, L. Xu, and J. Jia. Rolling guid-
ance filter. In European Conference on Computer Vision
(ECCV), pages 815–830, 2014. 5

4

Input L0.1 L0.5 L0.8 L1 L2 L2 (w
s)

Figure 2: Image smoothing results with different Lp regularization in the smoothness term. Gaussian weights with color
affinity is used for these results except for the last one which uses spatial affinity. The bottom row show the resultant brightness
values on the 1D image slice indicated by the red line. Smaller p values can well flatten the details and preserve the important
structures, but spurious edges may arise (known as the staircasing artifact). A large p value such as p = 2 may lead to blurry
results and miss some important image structures. The smoothing results are optimized by the basic criterion.

Input Ours SGF SDF L1 BTLF

FGS RGF RTV L0 WLS BLF

Figure 3: Visual comparison between our method and previous image smoothing methods, abbreviated as SGF [14], SDF [7],
L1 [2], BTLF [3], FGS [8], RGF [15], RTV [13], L0 [12], WLS [6] and BLF [11]. Our smooth image is generated by depressing
the low-amplitude details and preserve the high-contrast structures. As can be seen, in addition to achieving pleasing flattening
effects, the slender rope is also maintained much better in our result than the others.

5

Figure 4: Edge-preserving smoothing results. Note all these results are generated without any parameter tweaking for this
application.

6

Figure 5: Edge-preserving smoothing results. Note all these results are generated without any parameter tweaking for this
application.

7

Input Smooth image Abstraction (w/o Tone) Abstraction Pencil Drawing

Figure 6: Image abstraction and pencil drawing results. Note all these results are generated without any parameter tweaking
for this application.

8

Input Smooth image Abstraction (w/o Tone) Abstraction Pencil Drawing

Figure 7: Image abstraction and pencil drawing results. Note all these results are generated without any parameter tweaking
for this application.

9

Input Smooth image Abstraction (w/o Tone) Abstraction Pencil Drawing

Figure 8: Image abstraction and pencil drawing results. Note all these results are generated without any parameter tweaking
for this application.

10

Input Smooth image Abstraction (w/o Tone) Abstraction Pencil Drawing

Figure 9: Image abstraction and pencil drawing results. Note all these results are generated without any parameter tweaking
for this application.

11

Input Smooth image Abstraction (w/o Tone) Abstraction Pencil Drawing

Figure 10: Image abstraction and pencil drawing results. Note all these results are generated without any parameter tweaking
for this application.

12

Input Smooth image Detail Enhancement

Figure 11: Detail enhancement results. Note all these results are generated without any parameter tweaking for this application.

13

Input Smooth image Detail Enhancement

Figure 12: Detail enhancement results. Note all these results are generated without any parameter tweaking for this application.

14

Input Smooth image Detail Enhancement

Figure 13: Detail enhancement results. Note all these results are generated without any parameter tweaking for this application.

15

Input Smooth image Detail Enhancement

Figure 14: Detail enhancement results. Note all these results are generated without any parameter tweaking for this application.

16

Input Smooth image Detail Enhancement

Figure 15: Detail enhancement results. Note all these results are generated without any parameter tweaking for this application.

17

Input Smooth image Detail Enhancement

Figure 16: Detail enhancement results. Note all these results are generated without any parameter tweaking for this application.

18

Input Smooth image Detail Enhancement

Figure 17: Detail enhancement results. Note all these results are generated without any parameter tweaking for this application.

19

Figure 18: Texture removal results. Note all these results are generated without any parameter tweaking for this application.

20

Figure 19: Texture removal results. Note all these results are generated without any parameter tweaking for this application.

21

Input Background smooth Foreground Enhancement

Figure 20: Content-aware image manipulation results. Note all these results are generated without any parameter tweaking for
this application.

22

Input Background smooth Foreground Enhancement

Figure 21: Content-aware image manipulation results. Note all these results are generated without any parameter tweaking for
this application.

23

Input Background smooth Foreground Enhancement

Figure 22: Content-aware image manipulation results. Note all these results are generated without any parameter tweaking for
this application.

24

Input Background smooth

Figure 23: Background smooth results. Note all these results are generated without any parameter tweaking for this application.

25

Figure 24: Foreground enhancement results. Note all these results are generated without any parameter tweaking for this
application.

26

Figure 25: Foreground enhancement results. Note all these results are generated without any parameter tweaking for this
application.

27

