
1057-7149 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2020.3009844, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Controllable Image Processing via Adaptive
FilterBank Pyramid

Dongdong Chen, Qingnan Fan, Jing Liao, Angelica Aviles-Rivero, Lu Yuan, Nenghai Yu, Gang Hua, Fellow, IEEE

Abstract—Traditional image processing operators often pro-
vide some control parameters to tweak the final results. Re-
cently, different convolutional neural networks have been used
to approximate or improve these operators. However, in those
methods, one single model can only handle one operator of
a specific parameter value and does not support parameter
tuning. In this paper, we propose a new plugin module, “Adaptive
Filterbank Pyramid", which can be inserted into a backbone
network to support multiple operators and continuous parameter
tuning. Our module explicitly represents one operator with
one filterbank pyramid. To generate the results of a specific
operator, the corresponding filterbank pyramid is convolved with
the intermediate feature pyramid produced by the backbone
network. The weights of the filterbank pyramid are directly
regressed by another sub-network, which is jointly trained with
the backbone network and adapted to the input parameter, thus
enabling continuous parameter tuning. We applied the proposed
module for a large variety of image processing tasks, including
image smoothing, image denoising, image deblocking, image
enhancement and neural style transfer. Experiments show that
our method is generalized to different types of image processing
tasks and different backbone network structures. Compared to
the single-operator-single-parameter baseline, our method can
produce comparable results but is significantly more efficient in
both training and testing.

I. INTRODUCTION

Image processing is an important and fundamental research
field in computer vision, which includes lots of tasks (e.g. im-
age smoothing, restoration, stylization). Over the last decades,
many different algorithms (referred as “operators") have been
proposed for these tasks, such as !0 smoothing [26], BM3D
[7] and neural style transfer [15], [3]. Most of these operators
provide some control parameters to tweak the final results. For
example, a hyper-parameter Θ is used to control the smoothing
degree in [26], and the style weight in [15] determines how
much the input image should be stylized. Tuning these control
parameters are especially useful for users to get their desired
results in real applications.

Dongdong Chen and Nenghai Yu are with the Department of Electronic
Engineering and Information Science, University of Science and Tech-
nology of China, Hefei, Anhui 230026, China. E-mail:cddlyf@gmail.com,
ynh@ustc.edu.cn

Qingnan Fan is with the Computer Science Department, Stanford Univer-
sity, Stanford, California 94305, US. Email: fqnchina@gmail.com

Jing Liao is with the Department of Computer Science, City University of
Hong Kong. Email: jingliao@cityu.edu.hk

Angelica I. Aviles-Rivero is with the DAMTP and DPMMS, University of
Cambridge, Email: ai323@cam.ac.uk

Lu Yuan is with Microsoft Cloud AI, Redmond, Washington 98052, USA.
Email: luyuan@microsoft.com

Gang Hua is with Wormpex AI Research LLC, WA 98004, US. E-mail:
ganghua@gmail.com

Jing Liao and Gang Hua are the corresponding authors.

Despite their success, some traditional operators are very
time-consuming and the results of some operators are still not
good enough because only low-level statistics are used. In-
spired by the tremendous success of deep learning techniques,
some recent works [4], [27], [13], [22] have investigated
deep neural networks (DNNs) to accelerate or improve these
traditional operators. These methods often pre-generate a large
set of training image pairs by running a traditional operator
with specific parameters, then train a network to approximate
this operator quickly as a regression problem. Thanks to the
powerful learning capacity of deep neural networks, huge
improvements have been achieved by these methods. However,
without a good adaptive mechanism, they often have two
important limitations for real applications.

The first limitation is that existing models do not support
parameter tuning (parameter-specific). For different parameter
values of an operator, separated models need to be retrained,
which is very time and storage consuming. Even worse, these
control parameters are often continuous and users may want
to tweak them to achieve satisfactory results, e.g., tuning the
stylization degree in style transfer. However, it is unrealistic
to train numerous models for densely sampled parameter
values. The underlying reason for this limitation is that current
vanilla DNNs do not have good adaptive mechanisms, which
means that their weights are fixed once trained. Thus during
runtime, given an input image, only one processed result can
be obtained.

The second limitation is that one model can only handle one
specific operator (operator-specific), which means different
models need to be retrained for different operators. Take the
style transfer as an example, only one style is learned in
one network. Considering the limited storage budget in real
applications, this limitation is a fatal obstacle. However, dif-
ferent operators within the same class (e.g. different smoothing
operators, or different styles in neural style transfer) often
leverage some common image statistics (e.g. edges, semantic
information). Thus, it is possible to train them in one single
network without quality degradation.

Inspired by the “Stylebank" idea in [4] and the decouple
learning mechanism in [12], this paper proposes a new plugin
module “Adaptive Filterbank Pyramid" to address the above
limitations. This plugin module can be inserted into the back-
bone network to support multiple operators and continuous
parameter tuning. Specifically, as shown in Figure 1, we use a
shared encoder and decoder for all operators and explicitly
represent each operator with a filterbank pyramid. During
runtime, to generate the results of one specific operator, its
corresponding filterbank pyramid is convolved with the inter-

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on July 24,2020 at 23:52:50 UTC from IEEE Xplore. Restrictions apply.

1057-7149 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2020.3009844, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

mediate feature pyramid produced by the backbone encoder.
To support parameter tuning, the weights of the filterbank

pyramid will be directly regressed with another weight sub-
network, whose input is the control parameters. In this way,
when users select different control parameter values, the
weight sub-network will dynamically change the weights of
the filterbank pyramid to produce different processing results.
Another bonus is that the intermediate feature pyramids can
be reused when tuning parameters for one operator, which can
save about half of the computation cost.

To demonstrate the effectiveness of our proposed Adaptive
FilterBank Pyramid, we first implement our idea to approx-
imate different image smoothing operators simultaneously
within one single network, which includes bilateral filter [24],
!0 smoothing [26], relative total variation (RTV) regulariza-
tion [28], rolling guidance filter (RGF) [31] and weighted
median filter (WMF) [32]. Some of these smoothing operators
are very slow because of their optimization procedure. Com-
pared to the single-operator-single-parameter baseline, our
method can obtain comparable results both qualitatively and
quantitatively, but ours is significantly more efficient in both
training and testing by supporting multiple different image
operators in a single model. As a plugin module, we also
demonstrate the proposed Adaptive FilterBank Pyramid can be
easily inserted into different backbone auto-encoder networks.

To show the generalization capabilities of our approach to
other image processing tasks that need parameter tunning, we
further apply our method to image denoising, image deblock-
ing, image enhancement [14], and neural style transfer [4],
[15]. Experiments show that the proposed Adaptive Filterbank
Pyramid is very flexible and generalizable, which can handle
a wide range of applications.

Overall, our contributions are three-fold:
• We propose a new module, call Adaptive FilterBank

Pyramid, to explicitly represent different image process-
ing operators and support multi-operator training in one
single model.

• The weights of the proposed filterbank pyramid are de-
signed to be the output of another weight sub-network. By
feeding different parameter values into this sub-network,
the proposed filterbank pyramid can dynamically adjust
its behavior and enable real-time continuous parameter
tuning.

• We demonstrate the generality and effectiveness of the
proposed method with different backbone network struc-
tures and a large variety of image processing tasks.
Experiments show that it can generate comparable results
to the single-operator-single-parameter baseline, but is
significantly more efficient.

II. RELATED WORK

A. Traditional Image Processing Operators

Image processing has been an active and fundamental
research field in computer vision for a very long time. It
includes different types of processing tasks, such as image
smoothing, image enhancement, and image restoration. By
considering different image priors under these tasks, lots of

image processing operators have been proposed. For example,
different edge-preserving image smoothing techniques are
well-studied in [10], [14], [17], [24]. Spatial relationship and
redundancy are explored in [1], [7] for image denoising,
[14] uses a weighted least squares optimization framework
for progressive coarsening of images and multi-scale detail
extraction. To obtain a satisfactory result, a large part of these
operators provide some controllable hyper-parameters, e.g. the
smoothing parameter to control the final smoothness in [26].
Supporting continuous parameter tuning is one focus of our
method in this paper, and generalization ability to different
types of tasks is another focus.

B. Deep-Learning-based Approaches

Recently, deep-learning-based approaches have achieved
great success in both image recognition tasks [20], [18] and
image generation tasks [8], [16]. Since many traditional oper-
ators are based on a time-consuming optimization procedure
and only use some low-level image statistics, different deep
networks [27], [13], [22], [30], [2] have been proposed to
accelerate or improve them. Considering the underlying task-
specific priors, many useful strategies have been incorporated
in the network design to improve the performance, like dilated
convolution [29] to increase the receptive field or feeding the
edge map into the network as the extra auxiliary information
[13]. Despite their success in terms of quality and computa-
tional time, their networks are designed to train one model for
a single image operator with a specific parameter value.

To support multiple operators and parameters in the deep
network, as pointed out in [3], a naive naive idea is to add
extra input channels to indicate different filters and param-
eters, and then let the network to learn them as a black-
box. Compared to this perspective, our Adaptive FilterBank
Pyramid is a more explicit and explainable representation,
which can help to achieve better results and save testing time.
To allow continuous parameter tuning, Fan et al. [12] propose
a decouple learning algorithm to learn from the operator
parameters and dynamically adjust the network weights for
the image operator. Our adaptive weights idea is inspired by
this idea. However, unlike [10], where all the convolutional
weights are learned, we only learn the weights of filterbank
pyramid. And the backbone auto-encoder is shared, so it is
more efficient and storage saving. Compared to [5] and [12],
the proposed Adaptive FilterBank Pyramid is a novel plugin
module to support both multi-operator training and continuous
parameter tuning.

C. Multi-style transfer with Stylebank learning.

Our method is also related to the multi-style transfer method
[4], which represents each style with one stylebank kernel.
However, our method differs from [4] in three aspects: 1)
we aim to propose a general plugin module for different
types of image processing tasks including style transfer. 2)
Only a single-level convolution kernel is used in [4], but our
filterbank pyramid is designed to convolve with different levels
of features. This is important to many image processing tasks
(e.g. edge-aware filtering), which often utilizes both low-level

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on July 24,2020 at 23:52:50 UTC from IEEE Xplore. Restrictions apply.

1057-7149 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2020.3009844, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

𝐾𝑖
𝑗

Fig. 1. Our network architecture consists of three modules: an encoder, the new proposed Adaptive FilterBank Pyramid and a decoder. Each image operator
is represented by its corresponding filter bank pyramid, which is convolved with different level intermediate feature maps. To enable continuous parameter
tuning, the weights of each filter bank pyramid are the output of another weight sub-network W8 and will be adaptively changed during runtime by feeding
different Θ8 .

edge features and high-level semantic information. 3) The
stylebank [4] is fixed once trained for a specific style, and no
parameter tuning is allowed to change the stylization results. In
the experiment part, we show that our method can generalize
well to neural style transfer while enabling more capabilities.

III. METHOD

A. Overview of Our Method
Given an input image �, a specific image operator H8 , and

the corresponding tunable parameters Θ8 for H8 , the processed
result is denoted as $8 = H8 (�,Θ8). For different H8 , Θ8 could
be a single variable or a vector containing multiple variables,
which controls a desirable effect such as smoothness strength
of the filter, stylization degree or stroke size in neural style
transfer. Unlike most previous methods which use a network
N to approximate one specific filter H8 with one specific
Θ2>=BC
8

, we aim to design a new plugin module, which can
be inserted into a backbone network N to support multiple
image operators H1, ...,H= within a single model and enable
tuning Θ1, ...,Θ= continuously during runtime.

To achieve that, we propose the “Adaptive FilterBank
Pyramid" K1, ...,K= to represent different image operators
while all these operators share a common base network N ,
then the processed results of operator H8 are represented as:

$8 = N(K8 ,Θ8 , �)
K8 = 5 (Θ8)

(1)

To enable parameter tuning, we model the weights of K8 as
the function of Θ8 . Moreover, we use another weight sub-
network W8 to directly learn the specific formulation of 5

rather than design it in the handcrafted manner, i.e., 5 =W8 .
During runtime, by feeding different input parameters Θ8 to
W8 , the weights of its corresponding filterbank pyramid K8
will be dynamically adjusted and change the functionality of
N to generate different processed results corresponding to Θ8 .

B. Details of Network Structure
Our overall network structure is shown in Figure 1, which

consists of three modules: an encoder E, the proposed Adap-
tive FilterBank Pyramid set {K1, ...,K=} for different filters,

and a decoder D. Given an input image �, the encoder E first
encodes � into multi-level feature maps pyramid denoted as
F = (�1, ..., �<), where �; is the feature at level ;. Then,
we select the adaptive filterBank pyramid K8 = (1

8
, ..., <

8
)

corresponding to the specific image operator H8 to convolve
with the feature maps pyramid, finally the transformed feature
pyramid is fed into the decoder to get the final processing
result $8 . As described before, the weights of the adaptive
filterBank pyramid K8 are designed as the output of another
weight sub-network W8 , which are adapted to the input
parameter Θ8 .

a) Encoder and Decoder: As a flexible plugin, the
proposed Adaptive Filterbank pyramid can be used in different
types of backbone networks if they follow auto-encoder like
structures. To apply the proposed filterbank pyramid to in-
termediate feature maps, given a specific backbone network
N , we split it into an encoder E and decoder D. In this
paper, we adopt a similar backbone network N as [12]
by default, which consists of a total of 20 convolutional
layers with 3x3 kernel size. Considering the effectiveness of
residual learning, the intermediate 14 layers are formed as 7
residual blocks. The first three layers are vanilla convolutional
layers that downsample the dimension of the feature maps
by 1/2 to increase the receptive field and save intermediate
computation cost. Symmetrically, the third-to-last layer is a
stride- 1

2 fractionally strided convolution layer to upsample the
downsampled feature maps to the original image resolution,
followed by two convolution layers. Except for the last con-
volution layer, we put an instance normalization layer [25]
and ReLU layer after all the former convolutional layers. To
further increase the receptive field, different increased dilation
factors [29] are used in the convolution layers. Empirically, the
dilation factors are set as (2, 4, 4, 8, 8, 16, 1) for the 7 residual
blocks respectively.

To split the whole network N as encoder E and decoder
D, we regard all the layers before the fourth residual block as
the encoder and the remaining layers as the decoder. Detailed
network configurations is given in Table I. As both the low-
level features like edges and high-level features are impor-
tant to most image processing tasks (e.g. edge-aware image

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on July 24,2020 at 23:52:50 UTC from IEEE Xplore. Restrictions apply.

1057-7149 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2020.3009844, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE I
THE DETAILED ENCODER AND DECODER CONFIGURATION USED FOR THE
DEFAULT AUTO-ENCODER LIKE BACKBONE STRUCTURE. THE PREFIX E−

AND D− REPRESENT TO WHICH PART EACH MODULE BELONGS.

Layer type channel dilation kernel stride repeat
E−Conv 64 1 3 × 3 1 2
E−Conv 64 1 3 × 3 2 1

E−Residual block 64 2 3 × 3 1 1
E−Residual block 64 4 3 × 3 1 2
E−Residual block 64 8 3 × 3 1 1
D−Residual block 64 8 3 × 3 1 1
D−Residual block 64 16 3 × 3 1 1
D−Residual block 64 1 3 × 3 1 1
D−Deconv 64 1 4 × 4 2 1
D−conv 64 1 3 × 3 1 1
D−conv 3 1 1 × 1 1 1

filtering), we build a feature pyramid (�1, ..., �<) and add
several connections between the encoder and decoder, which is
different from [4], [12]. This feature map pyramid (�1, ..., �<)
is then convolved with the operator-specific adaptive filterbank
pyramid (1

8
, ..., <

8
).

(�1, ..., �<) = E(�),
(�1
8 , ..., �

<
8) = (�1 ⊗ 1

8 , ..., �
< ⊗ <8),

$8 = D(�1
8 , ..., �

<
8)

(2)

where ⊗ denotes the convolution operation. (�1
8
, ..., �<

8
) are

the operator-specific transformed feature maps and fed into the
decoder D to get the final filtering result $8 .

b) Adaptive FilterBank Pyramid: Assuming that we have
= different image operators H1, ...,H= to approximate, we
represent each operator H8 with one corresponding FilterBank
pyramid (1

8
, ..., <

8
), where ;

8
is the filter bank kernel at

level ;. In order words, if total = operators are considered,
= different Filterbank pyramids will be leveraged. To make
each Filterbank pyramid (1

8
, ..., <

8
) adaptive to different

input parameter Θ8 , we use another weight sub-networkW8 to
directly regress its weight values, whose input is the tunable
parameter Θ8 .

(1
8 , ...,

<
8) =W8 (Θ8) (3)

In the training stage, all these weight sub-networks are jointly
trained with the backbone encoder and decoder network.
Specifically, at each iteration, we randomly sample some
input images from the training dataset as a batch. For each
image, we further randomly sample an image operator and a
parameter value. This batch of images and sampled parameters
are fed into the backbone network and weight sub-networks
respectively to predict the target filtering results.

Since these weight sub-networks and the backbone network
are coupled in the same computation graph, the gradient of
the backbone network will be back-propagated to these sub-
networks to guide their training. Once these sub-networks are
well-trained, they will dynamically change the weights of their
corresponding filterbank pyramid with different user-selected
parameters. And because the filterbank pyramid is inserted
between the encoder and decoder, the feature maps generated
by the encoder can be reused when switching image operators

𝜆𝑖

… … … …
𝑐𝑖𝑛 × 𝑐𝑜𝑢𝑡 × 𝑘 × 𝑘

𝑓𝑐𝑖1
𝑙

reshape 𝐾𝑖
𝑙

𝑓𝑐𝑖2
𝑙 𝑓𝑐𝑖3

𝑙

Fig. 2. The diagram of the weight sub-network to generate ;
8

, which simply
consists of three fully connected layers.

or tuning parameter for the same input image, which is around
two times faster than a re-evaluation of the whole network.

c) Weight Sub-network: Each operator-specific weight
sub-network W8 adopts a similar network structure, except
that the input dimension may not be the same because of
different control parameter dimension. As shown in Figure 2, it
simply consists of three fully connected layers, between which
two nonlinear ReLU layers are inserted. The first and second
hidden unit number is 8, and the third hidden unit number
depends on the detailed weight dimension of the filterBank
pyramid. In our case, 1

8
, ..., <

8
are often with a dimension

of 2>DC×28=×:×: , where 2>DC , 28=, : denote the output channel
number, input channel number and kernel size respectively.

 ;8 = 5 2;83 (f(5 2
;
82 (f(5 2

;
81 (Θ8))))) (4)

d) Loss Function: For the image smoothing, restoration
and enhancement tasks, we follow the same strategy as [27],
[13], we simply use the mean squared Euclidean loss (L2 loss)
to train our network:

$8 = D(E(I,∇I) ⊗W8 (Θ8))
L = ‖$8 − .8 ‖2

(5)

where $8 is the predicted processing result corresponding to
one random sampled filter and discrete parameter by combi-
nation of Equation (2) and Equation (3), .8 is the ground truth.
To accelerate the training procedure, these training image pairs
are pre-generated. Though we simply adopt L2 loss here, our
proposed method is also general to other loss functions like
L1 and auxiliary perceptual loss [19] to better maintain the
image structures.

For neural style transfer, we adopt the same loss function
in [15], [19], which is the weighted sum of two parts: the
content loss L2 to preserve the structure of the input content
image � and the style loss LB

8
to encourage the style fidelity to

the 8-th target reference style image �B
8
. And we set the style

weight V8 as the input control parameter Θ8 , which determines
the final stylization degree. And in the training stage, we will
also dynamically change the loss weight of LB with different
input V8 as below.

L = UL2 ($8 , �) + V8LB ($8 , �B8) (6)

e) Extra Edge Input: For the image smoothing, restora-
tion and enhancement tasks, [13], [12] demonstrate that using
the edge information of the input image � as the extra channel
will help the network to preserve the original image structures

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on July 24,2020 at 23:52:50 UTC from IEEE Xplore. Restrictions apply.

1057-7149 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2020.3009844, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

and generate better results. Therefore, we also pre-calculate
the edge map ∇I of I as an extra input of the network. Note
that all the baselines, in the experiments, use this extra input
for a fair comparison.

∇I (G, H) =
1
4
|IG,H − IG−1,H | + |IG,H − IG+1,H |

+|IG,H − IG,H−1 | + |IG,H − IG,H+1 |
(7)

IV. EXPERIMENTS

In this section, we demonstrate the effectiveness and su-
periority of our “Adaptive FilterBank Pyramid" with respect
to state-of-the-art baseline methods. Firstly, we adopt it to
approximate six different edge-aware image smoothing oper-
ators, including bilateral filter [24], WLS [14], !0 [26], RTV
[28], RGF [31] and WMF [32], to prove the effectiveness and
feasibility of our method and conduct some ablation analysis.
Some of these operators like RTV are also learned in previous
baseline methods [5], [13], [12], [27] because of their slow
running speed. Secondly, we further apply our method to
other wide range of image processing tasks, including image
denoising, image deblocking, image enhancement and neural
style transfer, to show the powerful flexibility and generality
of the proposed plugin module.

A. Implementation Details.

For image smoothing, denoising, deblock and enhancement
tasks, we use the PASCAL VOC dataset [11] to pre-generate
the training image pairs as [12]. The total image number is
about 17k, and we randomly select 500 images as the test set.
Since our network is designed to process an image within a
continuous parameter range rather than a specific parameter
value, we generate our dataset by sampling different param-
eters randomly. In particular, for each image, we randomly
sample six different parameter values. Although it is not able
to cover the entire parameter space for a single image, it should
be enough by using the above large scale dataset. For the
sampling strategy, different from [12], we sample parameter
values in the parameter range uniformly. For neural style
transfer task, we follow the same training configuration as
[19] but regard the style weight as the control parameter.

By default, we use the Adam optimizer to train our network
with a batch size of 16 for 100 epochs. The initial learning
rate is 0.01 and decreased by a gamma multiplier of 0.1
at every 40 epochs. All the different operators are sampled
with the same probability at each iteration. Considering the
tradeoff between performance gain and complexity as shown
in following analysis Section IV-C-b, the default pyramid level
< is 2 in this paper, and �1, �2 are the output of the third
convolution layer and the fourth residual block respectively.

B. Comparisons on Image Smoothing Tasks

a) Comparison to Single-Operator-Single-Parameter
Baseline: Since our goal is to train multiple different image
operators within one single network while enabling the
continuous parameter tuning, our first baseline is the method
which trains single model for one image operator of one

specific parameter value. Since the final absolute performance
often depends on the backbone network, the same default
backbone is also used for the baseline. To measure the
performance difference, the PSNR and SSIM error metrics
are adopted.

For our baseline, we train the single model with five
different discrete parameter values for each operator. Though
our method supports continuous parameters, only the results
on these discrete parameter values are compared. As shown
in Table II, our method can achieve comparable results with
the single-operator-single-parameter baseline, but we train all
these operators within a single model while enabling continu-
ous parameter tuning. We have shown some visual comparison
results in Figure 3 along with the ground truth. Obviously, our
method can produce similar high-quality results for a wide
range of parameter values and different operators without the
need of retraining many separable models for each parameter
of each operator. They are almost identical to that generated
by the single model baseline and ground truth operators.

b) Comparison to Multi-Operator Baseline: We compare
our method against two recent methods [5], [12] which have
shown their simple extensions to multiple operators and pa-
rameter tuning. Chen et al. [5] propose to add two extra input
channels to indicate different operators and parameters, which
is the most naive and straightforward way, then let the network
learn like a black-box. As shown in Table IV, our results are
much better than [5]. This further demonstrates the superiority
of our explicit filterbank pyramid representation to the naive
black-box manner of [5].

In [12], multiple different weight learning networks are
used to learn all the convolutional weights of the backbone
network. If the backbone network consists of = convolutional
layers, = different weight subnets are needed, which is very
storage consuming. By contrast, our method only needs a fixed
number (e.g. 6) of sub-networks to regress the weights of
the filter pyramid. This is an important advantage, especially
for a deeper backbone network. Moreover, since the encoder
and decoder are shared by different operators in our method,
this helps to explore and utilize the common information of
these filters. For convenience, we directly cite the results from
[12]. By leveraging different levels of feature and the explicit
representation for each operator, our method significantly
outperforms [12].

c) Comparison with State-of-the-art Methods: Although
the goal of this paper is to achieve a good balance between
better results and enabling more capabilities for approximating
image operators, we still provide some comparisons to show
the position of our method with our default configuration. As
shown in Table VI, we compare our method with previous
state-of-the-art methods [27], [13] which are designed for
some specific image operators. Though they are trained for
only one operator with one specific parameter value, our
method can achieve very comparable results as [13], which
are much better than [27].

d) Speed Comparison: For the training speed with the
same backbone, since the single-operator-single-parameter
baseline needs to train separated models for each operator of
each parameter value, the training time is roughly < ∗ = (<

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on July 24,2020 at 23:52:50 UTC from IEEE Xplore. Restrictions apply.

1057-7149 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2020.3009844, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE II
QUANTITATIVE COMPARISON TO THE SINGLE-OPERATOR-SINGLE-PARAMETER BASELINE USING THE DEFAULT BACKBONE. IT SHOWS THAT OUR
METHOD CAN ACHIEVE VERY COMPARABLE RESULTS WITH THE SINGLE-OPERATOR-SINGLE-PARAMETER BASELINE WHILE ENABLING MULTIPLE

OPERATORS AND DYNAMIC CONTINUOUS PARAMETER TUNING WITHIN ONE SINGLE NETWORK.

Bilateral !0 RGF RTV WLS

metric Θ baseline our Θ baseline our Θ baseline our Θ baseline our Θ baseline our

PSNR

0.05 42.42 41.32 0.002 40.51 39.58 1 41.40 40.36 0.005 41.59 40.87 0.1 43.80 42.93
0.10 39.53 39.92 0.005 38.91 38.45 3 38.75 38.64 0.01 41.25 40.85 0.5 42.55 42.55
0.20 40.78 39.19 0.01 37.54 37.32 5 38.39 38.06 0.02 41.59 40.78 1.0 41.85 41.86
0.40 41.52 39.81 0.05 34.30 34.32 7 37.87 37.36 0.03 41.37 40.48 3.0 40.41 40.30
0.60 41.65 40.70 0.10 32.15 32.24 9 37.21 36.50 0.05 40.91 39.45 5.0 40.18 39.42

ave. 41.18 40.19 ave. 36.68 36.18 ave. 38.72 38.18 ave. 41.34 40.49 ave. 41.76 41.41

SSIM

0.05 0.992 0.992 0.002 0.986 0.987 1 0.994 0.990 0.005 0.990 0.989 0.1 0.994 0.993
0.10 0.990 0.991 0.005 0.985 0.986 3 0.987 0.987 0.01 0.990 0.990 0.5 0.993 0.992
0.20 0.992 0.990 0.01 0.983 0.985 5 0.986 0.984 0.02 0.992 0.991 1.0 0.991 0.992
0.40 0.992 0.990 0.05 0.979 0.981 7 0.984 0.982 0.03 0.992 0.991 3.0 0.988 0.989
0.60 0.991 0.990 0.10 0.973 0.976 9 0.982 0.979 0.05 0.992 0.991 5.0 0.988 0.987

ave. 0.991 0.991 ave. 0.981 0.983 ave. 0.987 0.984 ave. 0.991 0.990 ave. 0.991 0.991

Θ input 1 3 5 7 9

gt
-R

G
F

bs
-R

G
F

ou
r-

R
G

F

Θ input 0.1 0.5 1 3 5

gt
-W

L
S

bs
-W

L
S

ou
r-

W
L

S

Fig. 3. Visual comparison results among the ground truth operator(‘gt-*’), the single-operator-single-parameter baseline (‘bs-*) and our method (‘our-’).
Obviously, with different input control parameters for each image operator, our method can produce different visual plausible results without the need of
retraining multiple models for each parameter values, which are almost identical to that generated by the baseline method and ground truth operators.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on July 24,2020 at 23:52:50 UTC from IEEE Xplore. Restrictions apply.

1057-7149 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2020.3009844, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE III
TO SHOW THE GENERALITY OF OUR FilterBank PYRAMID, WE ALSO PROVIDE COMPARISON RESULTS WITH THE SINGLE-OPERATOR-SINGLE-PARAMETER

BASELINE AS TABLE II BUT USING A DIFFERENT BONE [5].

Bilateral !0 RGF RTV WLS

metric Θ baseline our Θ baseline our Θ baseline our Θ baseline our Θ baseline our

PSNR

0.05 36.83 39.56 0.002 36.80 37.15 1 36.80 38.99 0.005 34.93 37.38 0.1 38.14 40.82
0.10 36.29 37.50 0.005 33.71 35.89 3 34.25 36.16 0.01 33.99 34.49 0.5 36.72 39.41
0.20 35.80 36.15 0.01 33.04 34.49 5 33.90 35.17 0.02 33.39 35.99 1.0 36.15 38.41
0.40 36.36 36.52 0.05 30.33 31.22 7 33.29 34.43 0.03 33.41 35.31 3.0 35.64 36.59
0.60 37.58 37.18 0.10 28.81 29.40 9 33.08 33.50 0.05 33.44 34.16 5.0 34.95 35.67

ave. 36.83 37.38 ave. 32.54 33.63 ave. 34.26 35.65 ave. 33.83 35.46 ave. 36.32 38.18

SSIM

0.05 0.976 0.986 0.002 0.968 0.977 1 0.980 0.988 0.005 0.959 0.974 0.1 0.981 0.990
0.10 0.977 0.984 0.005 0.952 0.973 3 0.962 0.974 0.01 0.954 0.973 0.5 0.976 0.986
0.20 0.976 0.980 0.01 0.952 0.968 5 0.958 0.968 0.02 0.954 0.972 1.0 0.973 0.983
0.40 0.977 0.979 0.05 0.938 0.957 7 0.953 0.964 0.03 0.956 0.970 3.0 0.969 0.975
0.60 0.979 0.979 0.10 0.933 0.941 9 0.952 0.957 0.05 0.958 0.964 5.0 0.964 0.970

ave. 0.977 0.982 ave. 0.949 0.963 ave. 0.961 0.970 ave. 0.956 0.971 ave. 0.973 0.981

TABLE IV
COMPARISON WITH MULTI-OPERATOR BASELINE [5] USING THE SAME

BACKBONE. NOTABLY, OUR METHOD ARE MUCH BETTER.

Bilater L0 RGF RTV WLS

PSNR [5] 35.03 31.82 33.17 33.51 35.26
our 37.38 33.63 35.65 35.46 38.18

SSIM [5] 0.970 0.945 0.950 0.949 0.966
our 0.982 0.963 0.970 0.971 0.981

TABLE V
COMPARISON WITH THE MULTI-OPERATOR BASELINE [12], WHICH SHOWS

OUR METHOD CAN ACHIEVE BETTER RESULTS THAN [12].

L0 RGF RTV WLS WMF

PSNR [12] 33.54 35.90 37.69 38.02 36.46
our 36.18 38.18 40.49 41.41 38.93

SSIM [12] 0.972 0.976 0.982 0.983 0.970
our 0.983 0.984 0.990 0.991 0.983

is parameter value number, and = is operator number) longer
than our method. For the testing speed, thanks to our explicit
representation design, our method can reuse the intermediate
features. It only needs to rerun the layers after the proposed
filterbank pyramid when users want to tune the parameters
or switch filters. In contrast, previous methods [5], [12] need
to rerun the whole network. Therefore our method is roughly
two times faster when the encoder and decoder have similar
computation cost. Moreover, the method of [12] also needs to
run the weight sub-networks of all the layers.

C. Ablation Study

a) Generality to Different Backbones: Besides the de-
fault backbone, we also train our framework with a different
backbone proposed in [5]. For this backbone, we regard
the output of the second and fourth convolution layer as
�1, �2, and insert the adaptive filterbank pyramid. As shown
in Table III, with the backbone of [5], our proposed method

TABLE VI
COMPARISONS WITH STATE-OF-THE-ART

SINGLE-OPERATOR-SINGLE-PARAMETER METHODS. WE CAN ACHIEVE
COMPARABLE RESULTS AS [13], WHICH ARE BETTER THAN [27].

PSNR/SSIM [27] [13] our
!0 31.66 / 0.966 37.10 / 0.989 37.32 / 0.985

WLS 33.92 / 0.963 41.39 / 0.994 41.86 / 0.992

achieves even better results than the single-operator-single-
parameter baseline, which is quite surprising. One possi-
ble reason is that the newly added pyramid layers bring
this gain. To demonstrate our hypothesis, we also add this
pyramid layer into the original backbone network of [5]
and retrain the single-operator-single-parameter baseline. The
results (PSNR/SSIM) of the new baseline of each operator are:
Bilateral (37.75/0.982), !0 (33.79/0.960), RGF (35.45/0.972),
RTV(36.06/0.973), WLS (37.85/0.979), which are better than
the original baseline. On one hand, it demonstrates that our
pyramid design is beneficial for image filtering. On the other
hand, our results are still very close to this new baseline, which
demonstrates our generality to different backbones.

b) Importance of FilterBank Pyramid: Feature pyramid
demonstrated its effectiveness in many previous recognition
tasks like [23]. To show the advantage of filterbank pyramid
versus single scale filterbank for image filtering, we conduct
a comparison experiment where only one filterbank is utilized
(pyramid level is 1). The results are shown in Table VII at the
row labeled as “*-our-p1". By comparison, our pyramid design
achieves better results for the two different backbones [5],
[13]. We further increase the pyramid level from two (default
value) to three. We find that the performance (“*-our-p3") can
be further boosted. But considering both the model complexity
and the performance gain, we use pyramid level as two by
default. This experiment further indicates that leveraging both
the low-level and high-level features is very important to image
operators.

c) Performance change with different task number: Since
the goal of this paper is to jointly train multiple different

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on July 24,2020 at 23:52:50 UTC from IEEE Xplore. Restrictions apply.

1057-7149 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2020.3009844, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE VII
COMPARISON RESULTS OF DIFFERENT PYRAMID LEVEL. NET1 IS THE BACKBONE USED IN [5], AND NET2 IS THE OUR DEFAULT BACKBONE. “-OUR-P1”

TO “-OUR-P3” REFER TO THE RESULTS OF INCREASING THE PYRAMID LEVEL FROM 1 TO 3.

PSNR/SSIM Bilateral !0 RGF RTV WLS Ave.
Net1-our-p1 36.47 / 0.979 32.82 / 0.959 34.42 / 0.962 34.80 / 0.966 37.08 / 0.979 35.12 / 0.969
Net1-our-p2 37.38 / 0.982 33.63 / 0.963 35.65 / 0.970 35.46 / 0.971 38.18 / 0.981 36.06 / 0.973
Net1-our-p3 37.50 / 0.982 33.94 / 0.964 35.70 / 0.969 36.07 / 0.971 38.36 / 0.981 36.31 / 0.973
Net2-our-p1 39.97 / 0.991 36.01 / 0.982 37.93 / 0.984 40.49 / 0.991 41.16 / 0.991 39.11 / 0.988
Net2-our-p2 40.20 / 0.991 36.53 / 0.984 38.18 / 0.985 40.55 / 0.990 41.51 / 0.991 39.39 / 0.988
Net2-our-p3 40.48 / 0.991 36.78 / 0.984 38.35 / 0.985 40.76 / 0.991 41.61 / 0.991 39.60 / 0.988

TABLE VIII
COMPARISON RESULTS OF !0 FILTER WHEN SIMULTANEOUSLY TRAINED
WITH DIFFERENT NUMBERS OF IMAGE OPERATORS. IT SHOWS THAT THE

OVERALL PERFORMANCE OF !0 FILTER IS QUITE STABLE WHEN
SIMULTANEOUSLY TRAINED WITH DIFFERENT IMAGE OPERATORS.

#Task 1 2 3 4 5
PSNR 33.79 33.46 33.75 33.69 33.63
SSIM 0.960 0.963 0.964 0.964 0.963

operators within one single network, we are very interested in
how the performance changes with different operator numbers.
To study this effect, we use !0 filter as an example and
jointly train it with different numbers of operators (from 1
to 5). As shown in Table VIII, the performance of !0 is very
stable when jointly trained with different numbers of filters.
This further demonstrates the power and generality of our
proposed framework, which leverages the common properties
of different image operators very well. Note that the backbone
of [5] is used in this experiment.

d) Incremental training for a new operator:: In real
systems, given a well trained model, we may want to add
one new operator to it. Then we have two solutions: 1)
mix this operator with existing operators and train the model
from scratch. 2) keep the existing backbone fixed and only
train an extra filterbank pyramid for this operator. Compared
to the former solution, the latter one is more flexible but
challenging. To show the performance difference, we use the
WMF operator [32] as an example and add it into our default
model that already includes five operators. Table IX is the
detailed comparison results. It can be seen that, the incremental
training solution can achieve pretty good results. However, it
is a little worse than the first joint training strategy and the
single-operator-single-parameter baseline.

D. Extension to Other Tasks

After the demonstration of the effectiveness of our method
on smoothing operators, we will extend our method to two
image restoration tasks (i.e. denoising and deblocking), image
enhancement and neural style transfer respectively in the
following part to demonstrate the powerful flexibility and
generality of our method. Note that, for these tasks, the
goal of these experiments is not to achieve state-of-the-art
performance but to show the proposed plugin module can
support parameter tuning within one single network rather than
multiple independent models.

a) Image Denoising: As most previous methods, the
additive white Gaussian noise is considered in this paper.
During training, we randomly select different noise levels in
a range of [5,70] continuously and let the network learn to
denoise different levels of noisy images. Our baseline is three
separated models trained for the specific noise level 15, 25, 50
following the similar evaluation strategy as previous denoising
methods [7], [21], [30]. In this experiment, we consider gray
image denoising and compare our method to our baseline
and some previous state-of-the-art methods on the widely-used
BSD68 dataset. As shown in Table X, our method can not only
handle noisy images of any noise level in a continuous range
but also achieve comparable results to the single-operator-
single-parameter baseline (“single") that is trained for one
specific noise level. More surprisingly, it is even better than
some previous task-specific methods BM3D[7], UNLNet[21],
we think the main reason is that our default backbone is better
than the simple network structures used in these methods. The
running speed of different methods is given in the last row of
Table X.

In Figure 4, three visual denoising results are provided
to compare our method to some previous state-of-the-art
denoising methods, including BM3D [7], UNLNet [21] and
DnCNN [30]. The first example image and the last two images
are with a moderate noise level (25) and a strong noise level
(50) from the BSD68 dataset respectively. It can be seen that
our method can remove the noises of different levels and even
recover the sharp image edges better than these methods.

In Table XI, we give more dense comparison results with
our single model baseline. On the one hand, it shows that our
method can handle all different noise levels very well. On the
other hand, we find our method is even slightly better than the
single model baseline for some specific noise levels, which
may attribute to the better generalization ability from joint
training. We further give one denoising example in Figure 5
and its result is consistent with the above quantitative results.

b) Image Deblocking: In real applications, JPEG com-
pression is often used to compress the image into a smaller
size to save bandwidth and storage. However, this compression
procedure will cause some artifacts because of the high-
frequency information loss, which can be seen in the second
column in Figure 6. Image deblocking is the process aiming
to remove the block artifacts of a JPEG compressed image.
In the past, some methods have been proposed but are often
designed to handle one specific compression quality factor.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on July 24,2020 at 23:52:50 UTC from IEEE Xplore. Restrictions apply.

1057-7149 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2020.3009844, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

PSNR/SSIM

Input BM3D DnCNN UNLNet OurGT

30.84 / 0.7582 31.14 / 0.7738 31.04 / 0.7673

22.39 / 0.5831

23.64 / 0.7537

22.83 / 0.6114

24.12 / 0.7793

22.29 / 0.5531

23.59 / 0.7524

31.26 / 0.7824

23.39 / 0.6694

24.85 / 0.8164

22.23 / 0.2299

14.83 / 0.2828

14.70 / 0.2373

PSNR/SSIM

PSNR/SSIM

Fig. 4. Visual comparisons with some previous state-of-the-art methods for image denoising. The noise image of the first row is with the noise level of 25,
and the last two rows are with noise level 50. It shows that our method supports denoising of different continuous noise levels and our denoising results are
even better than some previous task- and parameter-specific methods.

30.78 / 0.8846 29.37 / 0.8463 27.49 / 0.7938 26.39 / 0.7442 25.59 / 0.7117

30.73 / 0.8820 29.35 / 0.8462 27.51 / 0.7918 26.45 / 0.7476 25.66 / 0.7170

Fig. 5. One denoising example of different noise levels (left to right: 15,20,30,40,50). The first to last rows are input noise images, denoising results of the
single-parameter baseline and our method respectively. The numbers below the images indicate the PSNR and SSIM. It shows that our method can handle
different noise levels and can achieve comparable results to the single-parameter baseline.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on July 24,2020 at 23:52:50 UTC from IEEE Xplore. Restrictions apply.

1057-7149 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2020.3009844, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE IX
INCREMENTAL TRAINING RESULTS (“OUR-INCRE") FOR A NEWLY ADDED OPERATOR WMF. IT SHOWS THAT OUR METHOD CAN ACHIEVE PRETTY GOOD

TRAINING RESULTS BY ONLY ADDING A NEW FILTERBANK PYRAMID WHILE KEEPING ALL OTHER REMAINING PARTS FIXED.

Θ 1 3 5 7 9 Avg
baseline 40.74 / 0.9909 39.85 / 0.9867 40.61 / 0.9888 40.33 / 0.9881 40.00 / 0.9869 40.31 / 0.9883

our 38.26 / 0.9863 39.30 / 0.9873 39.52 / 0.9879 39.19 / 0.9873 38.38 / 0.9852 38.93 / 0.9868
our-incre 35.85 / 0.9729 36.38 / 0.9714 36.19 / 0.9696 35.54 / 0.9661 34.78 / 0.9619 35.75 / 0.9684

TABLE X
QUANTITATIVE COMPARISONS FOR GRAY IMAGE DENOISING ON THE

BSD68 DATASET. OUR METHOD CAN ACHIEVE COMPARABLE RESULTS TO
THE SINGLE MODEL TRAINED ON ONE SPECIFIC LEVEL, AND IS EVEN

BETTER THAN SOME TASK-SPECIFIC METHODS.

f BM3D [7] DnCNN[30] UNLNet [21] our our-single
15 31.07 31.60 31.47 31.65 31.68
25 28.57 29.15 28.96 29.24 29.22
50 25.62 26.21 26.04 26.35 26.32

speed(s) 1.34(cpu) 0.033(gpu) 0.5(gpu) 0.041 (gpu) 0.041(gpu)

TABLE XI
QUANTITATIVE COMPARISONS FOR GRAY IMAGE DENOISING ON THE

BSD68 DATASET. OUR METHOD CAN ACHIEVE COMPARABLE RESULTS TO
THE SINGLE MODEL TRAINED ON ONE SPECIFIC LEVEL, AND IS EVEN

BETTER THAN SOME TASK-SPECIFIC METHODS.

f 15 20 25 30 35 40 45 50
our 31.65 30.26 29.24 28.43 27.78 27.24 26.76 26.35

our-single 31.68 30.25 29.22 28.40 27.74 27.19 26.70 26.32

Like denoising, by incorporating the proposed plugin module,
we want the network to be able to handle any compression
quality factor in a continuous range. In Table XII, we compare
our method on the LEVEL1 dataset to three JPEG deblocking
methods including ARCNN[9], TNRD[6] and DnCNN [30].
It shows that our results are very close to the single-operator-
single-parameter baseline, and even better than some previous
methods [9], [6], [30].

Three visual deblock results are given in Figure 6, where
the first example is with JPEG quality factor 20 and the latter
two examples are with JPEG quality factor 10. It can be
easily found that our method can recover cleaner and sharper
structures of arbitrary JPEG compression levels, which further
demonstrate our generalization ability.

c) Image Enhancement: In contrast to image smoothing,
the goal of this task is to enhance the image details. In [14],
Farbman et al. use the weighted least squares optimization
framework for progressive coarsening of images and multi-
scale detail extraction. In this experiment, we also use the
default backbone network to approximate the operator pro-
posed in [14] but enabling tuning the saturation factor to
obtain different enhancement results. Some visual results are
displayed in Figure 7.

d) Neural Style Transfer: For the original optimization
based neural style transfer [15] method, we can control the
final stylization degree by using different style weight V. How-
ever, many feed-forward network-based methods like [19], [4]

TABLE XII
QUANTITATIVE COMPARISONS FOR IMAGE DEBLOCKING ON THE LEVEL1

DATASET. OUR METHOD IS VERY COMPARABLE TO THE SINGLE MODEL
BASELINE AND EVEN BETTER THAN SOME STATE-OF-THE-ART METHODS

SPECIALLY DESIGNED FOR DEBLOCKING.

Quality ARCNN[9] TNRD[6] DnCNN [30] our our-single

PSNR
10 28.96 29.15 29.19 29.71 29.75

20 31.29 31.46 31.59 32.08 32.10

SSIM
10 0.8076 0.8111 0.8123 0.8256 0.8269

20 0.8733 0.8769 0.8802 0.8889 0.8891
speed (s) 0.01(gpu) 0.021(gpu) 0.033(gpu) 0.041(gpu) 0.041(gpu)

are only designed to stylize images into one specific degree
because no adaptive module exists in their networks. In this
experiment, we have tried to insert the proposed plugin module
into fast style transfer network [19]. Experiments show that
we can make it possible to dynamically adjust the stylization
degree continuously during runtime for [19]. In Figure 8, one
example with different stylization degrees is given.

V. CONCLUSION

In this paper, we propose a novel plugin module call
“Adaptive FilterBank Pyramid" that can be inserted into any
backbone network to enable multiple operator training and
continuous parameter tuning for controllable image process-
ing. We applied the proposed module to different kinds of im-
age operators and backbone network structures. Experiments
demonstrate the strong generalization ability and effectiveness
of our module, i.e. it can achieve comparable results with the
single-operator-single-parameter baseline but is significantly
more efficient in both training and testing. In the future, we
will try to apply this idea to more tasks including face attribute
transfer and multi-modal image generation.

Acknowledgement. This work was supported partly by the
NSF Grant U1636201, Exploration Fund Project of USTC
under Grant YD3480002001, Hong Kong ECS grant No.
21209119, Hong Kong UGC and Start-up grant No. 7200607,
CityU of Hong Kong. Gang Hua is partially supported by Na-
tional Key R&D Program of China Grant 2018AAA0101400
and NSFC Grant 61629301.

REFERENCES

[1] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image
denoising. In 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), volume 2, pages 60–65.
IEEE, 2005.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on July 24,2020 at 23:52:50 UTC from IEEE Xplore. Restrictions apply.

1057-7149 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2020.3009844, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

PSNR/SSIM

GT

PSNR/SSIM

PSNR/SSIM

JPEG

28.02 / 0.8367

25.08 / 0.7647

30.13 / 0.8737

ARCNN

29.84 / 0.8763

26.50 / 0.7994

32.89 / 0.9306

DnCNN

30.28 / 0.8860

26.75 / 0.8079

33.17 / 0.9338

Our

30.52 / 0.8912

27.12 / 0.8218

33.40 / 0.9370

Fig. 6. Visual comparisons with some previous state-of-the-art method of JPEG deblocking. The first example is with quality factor 20 and the last two
examples are with quality factor 10, which further demonstrate the generalization ability of our method to JPEG deblocking of arbitrary quality factors.

Fig. 7. Some visual results for image enhancement. By using the proposed
plugin module, it supports continuous parameters tuning.

Fig. 8. Some visual results of fast neural style transfer that can continuously
adjust stylization degree by using our plugin module in the single-style transfer
network [19].

[2] D. Chen, M. He, Q. Fan, J. Liao, L. Zhang, D. Hou, L. Yuan, and
G. Hua. Gated context aggregation network for image dehazing and
deraining. WACV 2019, 2018.

[3] D. Chen, J. Liao, L. Yuan, N. Yu, and G. Hua. Coherent online video
style transfer. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1105–1114, 2017.

[4] D. Chen, L. Yuan, J. Liao, N. Yu, and G. Hua. Stylebank: An explicit
representation for neural image style transfer. In Proc. CVPR, volume 1,
page 4, 2017.

[5] Q. Chen, J. Xu, and V. Koltun. Fast image processing with fully-
convolutional networks. In IEEE International Conference on Computer
Vision, volume 9, pages 2516–2525, 2017.

[6] Y. Chen and T. Pock. Trainable nonlinear reaction diffusion: A flexible
framework for fast and effective image restoration. TPAMI, 2017.

[7] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising
by sparse 3-d transform-domain collaborative filtering. TIP, 2007.

[8] C. Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016.

[9] C. Dong, Y. Deng, C. Change Loy, and X. Tang. Compression artifacts
reduction by a deep convolutional network. In CVPR, 2015.

[10] F. Durand and J. Dorsey. Fast bilateral filtering for the display of
high-dynamic-range images. In ACM transactions on graphics (TOG),
volume 21, pages 257–266. ACM, 2002.

[11] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man. The PASCAL Visual Object Classes Challenge 2012 (VOC2012)
Results, 2012.

[12] Q. Fan, D. Chen, L. Yuan, G. Hua, N. Yu, and B. Chen. Decouple
learning for parameterized image operators. In ECCV 2018, European
Conference on Computer Vision, 2018.

[13] Q. Fan, J. Yang, G. Hua, B. Chen, and D. Wipf. A generic deep
architecture for single image reflection removal and image smoothing.
In Proceedings of the 16th International Conference on Computer Vision
(ICCV), pages 3238–3247, 2017.

[14] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski. Edge-preserving
decompositions for multi-scale tone and detail manipulation. In ACM
Transactions on Graphics (TOG), volume 27, page 67. ACM, 2008.

[15] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using
convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2414–2423, 2016.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on July 24,2020 at 23:52:50 UTC from IEEE Xplore. Restrictions apply.

1057-7149 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2020.3009844, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680,
2014.

[17] K. He, J. Sun, and X. Tang. Guided image filtering. In European
conference on computer vision, pages 1–14. Springer, 2010.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[19] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style
transfer and super-resolution. In European Conference on Computer
Vision, pages 694–711. Springer, 2016.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[21] S. Lefkimmiatis. Universal denoising networks: A novel cnn architecture
for image denoising. In CVPR, 2018.

[22] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep joint image
filtering. In European Conference on Computer Vision, pages 154–169.
Springer, 2016.

[23] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J.
Belongie. Feature pyramid networks for object detection. In CVPR,
volume 1, page 4, 2017.

[24] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color
images. In Computer Vision, 1998. Sixth International Conference on,
pages 839–846. IEEE, 1998.

[25] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Improved texture
networks: Maximizing quality and diversity in feed-forward stylization
and texture synthesis. In CVPR, volume 1, page 3, 2017.

[26] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via l 0 gradient
minimization. In ACM Transactions on Graphics (TOG), volume 30,
page 174. ACM, 2011.

[27] L. Xu, J. Ren, Q. Yan, R. Liao, and J. Jia. Deep edge-aware filters.
In International Conference on Machine Learning, pages 1669–1678,
2015.

[28] L. Xu, Q. Yan, Y. Xia, and J. Jia. Structure extraction from texture
via relative total variation. ACM Transactions on Graphics (TOG),
31(6):139, 2012.

[29] F. Yu and V. Koltun. Multi-scale context aggregation by dilated
convolutions. arXiv preprint arXiv:1511.07122, 2015.

[30] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising. TIP, 2017.

[31] Q. Zhang, X. Shen, L. Xu, and J. Jia. Rolling guidance filter. In
European Conference on Computer Vision, pages 815–830. Springer,
2014.

[32] Q. Zhang, L. Xu, and J. Jia. 100+ times faster weighted median filter
(wmf). In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2830–2837, 2014.

Dongdong Chen is a Ph.D. student from the Univer-
sity of Science and Technology of China. He is also a
joint phd between his university and Microsoft Asia.
His research interests mainly include image genera-
tion, image restoration, low-level image processing
and high-level image recognition tasks.

Qingnan Fan is a Postdoctoral Scholar in the Com-
puter Science Department of Stanford University. He
received his PhD degree from Shandong University
in 2019. His research interests mainly include im-
age/video processing and 3D vision.

Jing Liao is an Assistant Professor with the Depart-
ment of Computer Science, City University of Hong
Kong (CityU). Prior to that, she was a Researcher at
Visual Computing Group, Microsoft Research Asia.
She received dual Ph.D. degrees from Zhejiang Uni-
versity and Hong Kong UST. Her primary research
interests fall in the fields of Computer Graphics,
Computer Vision, Image/Video Processing, Digital
Art and Computational Photography.

Angelica Aviles-Rivero is currently a post-doctoral
researcher (Research Associate) at DPMMS, Univer-
sity of Cambridge. She received her Ph.D. degree
(in 2017) in Computer Vision and Robotics at the
UPC-BarcelonaTech, Spain under the supervision of
Prof. A. Casals. Her research lies at the intersection
of computational mathematics and machine learning
for applications to large-scale real world problems.

Lu Yuan received his PhD degree from the Depart-
ment of Computer Science and Engineering at the
Hong Kong University of Science and Technology
in 2009. Before that, he received his MS degree
at TsingHua University. Now he is a Senior Re-
search Manager in Microsoft Redmond. His research
interests include computer vision, applied machine
learning and computational photography.

Nenghai Yu is a full Professor at University of
Science and Technology of China. He is also
the director of Information Processing Center of
USTC,deputy director of academic committee of
School of Information Science and Technology. He
received the Ph.D. degree from USTC in 2004. He
was a visiting scholar in Institute of Production
Technology, Faculty of Engineering, University of
Tokyo, in 1999 and did cooperative research as
the senior visiting scholar in Dept. of Electrical
Engineering, Columbia University, from Apr. to Oct.

2008. His research focuses on image processing and video analysis, multi-
media communication, media content security, Internet information retrieval,
data mining and content filtering , network communication and security.

Gang Hua is the Vice President and Chief Scientist
of Wormpex AI Research. Before that, he was the
Principal Researcher/Research Manager at Microsoft
Research between 2015 to 2018. He was an Asso-
ciate Professor of Computer Science in Stevens Insti-
tute of Technology between 2011 and 2015, while
holding an Academic Advisor position at IBM T.
J. Watson Research Center. He has published more
than 150 peer reviewed papers in top conferences
such as CVPR/ICCV/ECCV, and top journals such
as T-PAMI and IJCV. To date He holds 18 issued U.S

Patents and also has 14 more U.S. Patents Pending. He is an IEEE Fellow, an
IAPR Fellow, and an ACM Distinguished Scientist. His research focuses on
artificial intelligence, computer vision, pattern recognition, machine learning,
and robotics, with primary applications in the cloud and mobile intelligence
domain.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on July 24,2020 at 23:52:50 UTC from IEEE Xplore. Restrictions apply.

