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1 METHOD DETAILS
Prompt Template. We explain the construction of the category-

aware long prompt in more detail here, which is illustrated in Fig-
ure 1. We first translate each instruction 𝐴𝑘 in the program P𝑡
into a template sentence 𝐴𝑘𝑐 by filling the category labels of the in-
volved objects into a pre-defined template for the action. Then, the
category-aware long prompt is generated by filling the translated
instruction sentences P𝑡𝑐 = {𝐴𝑘𝑐 }𝑡𝑘=1 and the description D into a
prompt template with keywords that identify the description and
the program.

Feature propagation in the aHGN. The aHGN is composed of mul-
tiple layers where the feature propagation is performed layer per
layer. Given a set of node features 𝑀𝑡,(𝑙 ) = {𝑚𝑡,(𝑙 )

𝑖
}𝑁𝑣

𝑖=1 of layer 𝑙 ,
the adjacent objects AD𝑡 = {ad𝑡𝑖 }

𝑁𝑣

𝑖=1 of the nodes, and the global
features 𝐹 𝑡𝑔 and 𝐹 𝑡

𝑙
, each node feature𝑚𝑡+1,(𝑙+1)

𝑖
at layer 𝑙 + 1 is up-

dated with its incoming information 𝛿𝑡+1,(𝑙+1)
𝑖

, which is produced
by aggregating the node features of the node’s neighbors 𝑗 ∈ ad𝑡𝑖 at
the previous layer:

𝑚
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, (2)
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Prompt Template

Fig. 1. Example of the process for generating a long prompt for a description
and partial program.
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where GRUU refers to a GRU update module like the one proposed
by Li et al. [2015]. 𝐾 denotes the number of heads of the multi-head
attention [Vaswani et al. 2017], ∥ denotes the concatenation oper-
ation, 𝛽 is a scaling factor for the residual connection of attention
scores between layers [He et al. 2020], E𝑒 (𝑒𝑖 𝑗 ) is the relation embed-
ding for the relation type 𝑒𝑖 𝑗 , and softmax𝑗 indicates performing
softmax over all the adjacent objects 𝑗 ∈ ad𝑡𝑖 of object 𝑖 .

Loss Function. Our network is trained end-to-end with the loss
function defined for each iteration of instruction generation as
follows:

𝐿 = 𝜔𝑎𝐿𝑎 + 𝜔 𝑓 𝐿𝑓 + 𝜔𝑐𝐿𝑐 + 𝜔ℎ𝐿ℎ, (6)
where 𝐿𝑎 is the action loss, 𝐿𝑓 = 𝐿1

𝑓
+ 𝐿2

𝑓
is the fused instance loss,

𝐿𝑐 = 𝐿
1
𝑐 + 𝐿2

𝑐 is the category loss, and 𝐿ℎ is the human link loss. We
provide more details on these terms as follows.
Given the ground truth instruction 𝐴𝑡+1 = (𝑎𝑡+1, 𝑣𝑡+1
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where 𝜙 (index, label) denotes a binary indicator which returns
True only if index is equal to label. 𝐿2

𝑓
and 𝐿2

𝑐 are computed in the
same way as 𝐿1

𝑓
and 𝐿2

𝑐 , respectively.
The human-link loss is computed with binary cross-entropy loss:
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= sigmoid(𝑃𝑡
ℎ,𝑖
),

(10)

with 𝜓𝑡
ℎ
(𝑖) denoting a binary indicator for the future link of the

human node, which returns True only if there exists a spatial link
between node 𝑣𝑡+1

𝑖
and the human agent node at time step 𝑡 + 1.

2 IMPLEMENTATION DETAILS
Hyper-parameters and network architecture details. The data com-

prises 45 actions, 284 object categories, and 5 relation types. The
number of dimensions of the embedding vectors, including the ac-
tion embedding, category embedding, word embedding, and relation
embedding, is set to 300, except for the edge embedding in the aHGN,
which is set to 64. All the MLPs have 256 hidden units, except for
those in the memory-based feature update module, which have 64
hidden units, and those in the activity-aware feature propagation
module, which have 16 hidden units. All the activation functions
in the MLPs are Tanh, except for those in the aHGN which are
LeakyReLU with a negative slope value of 0.05. In the two-branch
feature encoding module, we adopt GPT-2 [Wei et al. 2021] as the
language model, and utilize LoRA [Hu et al. 2021] to fine-tune only
the newly added weights of GPT-2, where the rank of the update
matrices is set to 16, the scaling factor is set to 32, and the dropout
rate is set to 0.1. The word embedding is initialized with GloVe [Pen-
nington et al. 2014], where both GRUs have 256 hidden units. In
the feature-hybrid instruction generation module, the GRU in the
computation of the human-centric probability has 64 hidden units. In
the aHGN in the instruction execution and scene update module, the
number of heads of the multi-head attention is set to 4, the GRU has
64 hidden units, and the scaling factor for the residual connection
is set to 0.05.

Training Details. Our networks are implemented using PyTorch
and optimized using the Adam optimizer with 𝛽1 = 0.9 and 𝛽2 =

0.999. The initial learning rate is 3 × 10−4, which is multiplied by
0.9 per 1, 000 iterations. We train the networks with a batch size of 8
on an NVIDIA 3090ti GPU for 20,000 iterations for almost 45 hours.

Model Details. The numbers of parameters and inference time of
our method and all the baselines are shown in Table 1. Note that we
perform inference for the ZP (GPT-3), ZP-S (GPT-3) and ZP-S(GPT-4)
methods with and online API. Thus, their inference time cannot be
measured.

ZP (GPT-3), ZP-S (GPT-3) and ZP-S(GPT-4) have the largest num-
ber of parameters, since they use the large language model GPT-
3 [Brown et al. 2020] or GPT-4 [OpenAI 2023]. The number of
parameters of RAG (Two, GRU) and RAG (Two, GPT-2) are both

Table 1. The numbers of parameters and inference time of our method and
all the baselines. The inference time is measured on an NVIDIA 3090Ti GPU
with batch size of 1.

Parameters (M) Inference Time (s)

VH (GRU) 4.93 0.025
VH (GPT-2) 131.00 0.308
ZP (GPT-3) 175,000.00 -
ZP-S (GPT-3) 175,000.00 -
ZP-S (GPT-4) 170,000,000.00 -
RAG (Two, GRU) 129.25 0.308
RAG (Two, GPT-2) 6.83 0.325
RAG (One, GRU) 4.24 0.305
Ours 137.33 1.120

Table 2. Performance comparison of our method in training and testing.
The evaluation metrics are the same as those used in the main text.

Rationality LCS Executability Completeness

Training 0.720 0.878 0.874 0.859
Run-time 0.438 0.515 0.746 0.584

larger than RAG (One, GRU), as these methods adopt a two-stage
framework. Our model also has many parameters, mainly due to
the use of the pre-trained language model GPT-2 [Wei et al. 2021].
We also find that VH (GRU) has the shortest inference time, be-

cause it does not use the scene graph as input, and thus it does
not require time to process the scene-related data. Since we utilize
a pre-trained language model and perform dynamic scene update
operations, the inference time of our method is relatively long.

The performance of our method during training and at testing is
shown in Table 2. We can see that the performance of our method
in the two phases is relatively stable. We notice a drop in the Ra-
tionality, LCS, and Completeness scores during run-time as those
three metrics require a comparison to the GT program, which is
only one possible way of executing the corresponding activity.

Details of Evaluation Metrics. According to Liao et al. [2019], Com-
pleteness is computed between the scene graphs 𝐺 and 𝐺 using the
F1 score, where 𝐺 and 𝐺 are the final scene graphs after the execu-
tion of the predicted and ground truth programs, respectively:

F1 (𝐺,𝐺) =
2 · P(𝐺,𝐺) · R(𝐺,𝐺)
P(𝐺,𝐺) + R(𝐺,𝐺)

, with (11)

P(𝐺,𝐺) = ∥T(𝐺)∥ ⊗ ∥T(𝐺)∥
∥T(𝐺)∥

, and (12)

R(𝐺,𝐺) = ∥T(𝐺)∥ ⊗ ∥T(𝐺)∥
∥T(𝐺)∥

, (13)

where ⊗, P, and R are the binary matching function, precision, and
recall, respectively. T is a function that converts a graph to tuples.
In particular, we only compare the sub-graph containing the object
instances mentioned in the predicted and ground truth programs.
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Scene_1 = [

    (“bathroom“, [
        (“bedroom_cabinet“, [opened], [
             (“detergent“),
        ),
        . . .
        (“computer“, [switched_off, plugged_out]),
    ])
    . . .
    (“bedroom“, [
        (“dresser“, [closed], [
             (“hanger“),
        ),
        . . .
        (“cat“),
        (“couch“),
        (“light“, [switch_off, plugged_out]),
    ])
]

Scene-aware example part 1 : Scene graph as a nested list

Task_1 = {}

Task_1[“Scene“] = Scene_1

Task_1[“Description“] = “turn on light, pet my cat in the couch.“ 

Task_1[“Program“] = [

    # since the “bedroom“ in scene_1 has “cat“, “light“ and “couch“, we need to walk

       to it.

    (“walk“, “bedroom“, “None“),

    (“walk“, “light“, “None“),

    (“find“, “light“, “None“),

    # since the state of “light“ in “bedroom“ in scene_1 is [switch_off, plugged_out],

       we need to first plug it in and then switch on it.

    (“plugin“, “light“, “None“),

    (“switchon“, “light“, “None“),

    (“walk“, “couch“, “None“),   

    (“sit“, “couch“, “None“),   

    (“turnto“, “cat“, “None“),   

    (“touch“, “cat“, “None“),   

]    

Scene-aware example part 2 : Program associating with scene states

Prompt

Scene_2 = [...]

Task_2 = {...}

Scene_3 = [...]

Task_3 = {...}

Other scene-aware examples

New Scene and Description for inference

Scene_4 = [...]

Task_4 = {}

Task_4[“Scene“] = Scene_4

Task_4[“Description“] = “Take book off the bookshelf.“  

Fig. 2. The prompt with scene-aware examples constructed for the ZP-S
method.

Executability refers to the semantic correctness of each instruction
in a program. For an instruction to be executable, it needs to meet
the following two conditions: 1) The combination of the object
and action is valid, e.g., “Grab bathroom” is invalid, and 2) The
instruction can be performed under a given scene state, e.g., “Grab
book” is only valid if the human agent has closed the object “book”.

3 EXPERIMENT DETAILS
Prompt construction for ZP-S. The zero-shot planner [Huang et al.

2022] generates a program without taking the current scene into
consideration, which may predict instructions that are inconsistent
with the scene state, e.g., turn on a TV that is already on. Since the
LLM generates new samples by imitating the given samples, we
construct a new prompt that contains several scene-aware exam-
ples to make the LLM learn to generate a program based on the
given scene. Specifically, for a given input, we first transform the
corresponding scene graph into text and add it at the front of the
program. Then, we modify the example program accordingly by
explicitly associating some of its instructions with the scene states.
Inspired by ProgPrompt [Singh et al. 2022], we create a prompt

structured as python code and use an LLM to complete the code. The
prompt contains three scene-aware examples, and each example is
composed of three parts: a scene graph presented in text format, an
activity description, and a program associated with the scene states.
Due to the limited number of input tokens that the LLM can

accept, we cannot convert the whole scene graph into text, which
contains many nodes and edges. For this reason, we keep only those
parts of the scene graph that are useful for program generation. For
each node, we keep only the category of the object and its state, e.g.,
“light” and (“switched_off”, “plugged_out”). For the edges between
nodes, we only keep the edges of type “inside” because they are suffi-
cient for identifying the location of an object for program generation.
For example, if we would like to generate a program for the activity
“read book”, we only need to know where the book is, which can be
clearly indicated by the edges of type “inside”. Considering the above
two points, we choose to use nested python lists to represent the
scene graph, which contains a list of objects in the scene. Each object
in the list is represented as a python tuple (“class_name”, “state_list”,
“child_object_list”), where “class_name” is the category of the object,
“state_list” is the state list of the object, and “child_object_list” is
the list of related nodes with edges of type “inside”. As shown in
the first block of Figure 2, the scene contains a “bedroom”, which
contains a “bedroom_cabinet” with state “open” and a “computer”
with state “switched_off” and “plugged_out”, where “detergent” is
inside the “bedroom_cabinet”.

Besides adding the scene into the prompt, we also need to modify
the program accordingly to make some of its steps consider the
scene states. Specifically, we add the corresponding scene conditions
before the instructions that need to be predicted based on the scene
states. As shown in the second block of Figure 2, we add the sentence
“since the light is plugged in and switched off” in the form of a code
comment before the instructions “plug in light” and “switch on
light”. Given an example program like this, the LLM can learn to
generate instructions based on the scene state by first predicting a
corresponding comment with scene information. To further facilitate
the parsing of the sentences generated by the LLM into the formatted
instructions, each instruction in the example program is represented
as a tuple (action, object1, object2), and thus the LLM can generate
instructions in such a format, where the nouns of the action and
objects can be simply extracted from the sentences.
Based on the given examples, the LLM can learn to imitate to

generate the program for new examples using the corresponding

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.
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Table 3. Statistics of error types that lead to a program not being executable.

AC DU LG Attribute Distance State Total

632 568 175 1375
✓ 178 639 232 1049

✓ 311 400 33 744
✓ 528 336 108 972
✓ ✓ 346 393 53 792
✓ ✓ ✓ 145 412 139 696

Table 4. Ablation study on language guidance.

Rationality LCS Executability Completeness

Strategy 1 0.380 0.443 0.515 0.366
Strategy 2 0.384 0.425 0.548 0.415
Strategy 3 0.408 0.459 0.566 0.428
Strategy 4 0.391 0.451 0.600 0.455

scene information. Given a new scene graph and description as
input, we first transform the new scene into the nested list described
above, fill the list and the description into the prompt, and then feed
the entire prompt to the LLM. The LLM will generate a complete
program with many sentences, and the instructions can be simply
parsed from these sentences by matching the extracted words to
those in the action set and object category set based on semantic
similarity, like the operations on the Zero-shot Planner [Huang et al.
2022].
Analysis of executability in the results. We further analyzed the

impact of each module on the executability of the programs gener-
ated by our method. We counted different types of errors that lead
to non-executability as a percentage of the total test cases, includ-
ing attribute-oriented errors, state-oriented errors, and distance-
oriented errors. Attribute-oriented errors refer to the type of ac-
tion performed on an object that does not match its attributes, e.g.,
performing a grabbing action on a couch that does not have the
attribute “grabbable”. State-oriented error means that the execution
of a command does not satisfy the abstract scene state, e.g., per-
forming a ‘turn on” action on a TV that is already turned on. A
distance-oriented error is when the command does not satisfy the
interaction distance, such as grabbing an object that is not near the
human agent. Note that an instruction may involve multiple errors.
The results are shown in Table 3.

We find that all the key components of the method help reduce
these types of errors. Among them, Language Guidance (LG) mostly
reduces attribute-oriented errors because it semantically constrains
the selection of objects and actions with the language priors. Dy-
namic graph Update (DU) mostly reduces state-oriented errors be-
cause it explicitly updates the scene and therefore the model can
generate instructions based on an accurate scene state. Adjacency
Constraints (AC) mostly reduce distance-oriented errors because
they impose constraints on the selection of interactive objects to
prevent interaction with objects that are not near the human agent
in the next step.

Table 5. Ablation study on dynamic graph update.

MFU AFP Rationality LCS Executability Completeness

0.348 0.399 0.479 0.338
✓ 0.345 0.409 0.648 0.415

✓ 0.334 0.415 0.633 0.464
✓ ✓ 0.360 0.425 0.691 0.498

Table 6. Ablation study on adjacency constraints by considering the human
agent’s position.

History Rationality LCS Executability Completeness

0.326 0.370 0.588 0.392
✓ 0.346 0.423 0.604 0.423

Ablation study on language guidance. As language guidance is
one of the most important components of our method, we further
analyze different strategies for introducing a PLM to guide the gen-
eration of programs:
• Strategy 1: use solely 𝐹 𝑡

𝑙
extracted by the PLM to predict the

instance-wise probability of objects.
• Strategy 2: utilize 𝐹 𝑡

𝑙
to predict the instance-wise probability in-

stead of the category-wise one, and fuse the probability with 𝑃𝑡𝑔
predicted by 𝐹 𝑡𝑔 .
• Strategy 3: utilize 𝐹 𝑡

𝑙
to predict the category probability 𝑃𝑡𝑐 with-

out the global scene features 𝐹 𝑡S , and fuse the probability with 𝑃𝑡𝑔
predicted by 𝐹 𝑡𝑔 .
• Strategy 4: utilize 𝐹 𝑡

𝑙
, along with the global scene features 𝐹 𝑡S , to

predict the category probability 𝑃𝑡𝑐 , and fuse the probability with
𝑃𝑡𝑔 predicted by 𝐹 𝑡𝑔 .

As shown in Table 4, the performance of Strategies 3 and 4 that
utilize the PLM to predict category probabilities is obviously better
than Strategies 1 and 2 that utilize the PLM to predict instance-wise
probabilities. These results demonstrate that it is better to utilize the
feature 𝐹 𝑡

𝑙
with semantic information to predict the semantic cate-

gory of objects than the other options. Moreover, Strategy 4 performs
better than Strategy 3 in terms of Executability and Completeness,
proving the importance of global scene features 𝐹 𝑡S induced from
the graph-guided probability 𝑃𝑔𝑡 .
Ablation study on dynamic graph update. We also analyze the

sub-modules that perform the dynamic graph update, including the
memory-based feature update (MFU) and activity-aware feature
propagation (AFP). The results are shown in Table 5. We see that
both sub-modules can solely improve the performance.

Ablation study on adjacency constraints. We further analyze the
effectiveness of the human agent’s historical information for adja-
cency constraints. The baseline without the historical information is
created by replacing the historical human feature F th with the latest
node feature of the human agent zth to predict the human-centric
probability. The results are shown in Table 6. We can see that the
introduction of the historical information of the human agent helps
to improve the performance.
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